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Abstract
Amyloids have proven to be a widespread phenomenon 
rather than an exception. Many proteins presenting the hall-
marks of this characteristic beta sheet-rich folding have been 
described to date. Particularly common are functional amy-
loids that play an important role in the promotion of surviv-
al and pathogenicity in prokaryotes. Here, we describe im-
portant developments in amyloid protein research that re-
late to microbe-microbe and microbe-host interactions in 
the plant microbiome. Starting with biofilms, which are a 
broad strategy for bacterial persistence that is extremely im-
portant for plant colonization. Microbes rely on amyloid-
based mechanisms to adhere and create a protective coat-
ing that shelters them from external stresses and promotes 
cooperation. Another strategy generally carried out by amy-
loids is the formation of hydrophobic surface layers. Known 
as hydrophobins, these proteins coat the aerial hyphae and 
spores of plant pathogenic fungi, as well as certain bacterial 
biofilms. They contribute to plant virulence through pro-
moting dissemination and infectivity. Furthermore, antimi-
crobial activity is an interesting outcome of the amyloid 
structure that has potential application in medicine and ag-

riculture. There are many known antimicrobial amyloids re-
leased by animals and plants; however, those produced by 
bacteria or fungi remain still largely unknown. Finally, we dis-
cuss amyloid proteins with a more indirect mode of action in 
their host interactions. These include virulence-promoting 
harpins, signaling transduction that functions through amy-
loid templating, and root nodule bacteria proteins that pro-
mote plant-microbe symbiosis. In summary, amyloids are an 
interesting paradigm for their many functional mechanisms 
linked to bacterial survival in plant-associated microbial 
communities. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Plants are an important system for the study of mi-
crobe-microbe and microbe-host interactions together 
with their mechanisms. Plants constitute approximately 
80% of Earth’s total biomass, which makes them the 
world’s largest living surface area [Bar-On et al., 2018]. 
Furthermore, all plants are ubiquitously colonized by mi-
crobes, including bacteria, fungi, and oomycetes, to a 
variable extent [Beattie and Lindow, 1999; Kandel et al., 
2017]. Plant-colonizing microbes thrive on primary and 
secondary plant-derived metabolites, which include nu-
trients and protective compounds. In addition, plants 
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provide a niche that defends microbes against biotic and 
abiotic factors, in both the phyllosphere (above ground) 
and rhizosphere (below ground) parts of the plant [Mer-
cado-Blanco, 2014]. As a consequence, complex interac-
tions between prokaryotes and eukaryotes have evolved, 
where fungi and oomycetes are major determinants of the 
diversity and abundance of plant-associated bacteria 
[Agler et al., 2016]. This results in competition between 
microbes for access to the specific plant niches [Anderson 
et al., 2010; Chaudhry et al., 2021].

On one side of the spectrum, some microbes develop 
symbiotic relationships that benefit all parties by sharing 
common goods, which can be defined as secreted metab-
olites that benefit not just the producer but the whole 
community [Saikkonen et al., 2004]. On the other side, 
they can develop antagonistic relationships either toward 
other microbes or the host. In the first case, either a spe-
cific microbe or a number of them are inhibited through 
physical or chemical mechanisms. As a consequence, the 
competitors, either directly or indirectly, are denied ac-
cess to the plant’s resources. In the second, a pathogenic 
relationship develops, which benefits the microbe to the 
detriment of the host. Thus, pathogenic interactions pri-
marily benefit the pathogen and depending on symptoms 
to the host can be fatal to the native community. The key 
to colonization of both beneficial and pathogenic mi-
crobes is therefore a robust interaction with the host that 

can resist perturbations. Crucial mechanisms include 
biofilm formation and the release of antimicrobial and 
cytotoxic peptides to enforce niche colonization.

One intriguing class of proteins that is increasingly 
linked with pathogenicity and microbial survival in plant-
associated communities are amyloids. Amyloids are pro-
teins diverse in nature that have a set of common struc-
tural properties, the most salient of which is the capacity 
to polymerize as long unbranched fibrils with convergent 
characteristics (Fig. 1) [Makin et al., 2005]. These fibrils 
show a consistent cross beta structure, which consists of 
two parallel or antiparallel beta-sheets held together on 
their perpendicular axis through intermolecular hydro-
gen bonds [Nelson et al., 2005]. Single protofibrils may 
associate laterally with other protofibrils and lead to ma-
ture amyloid fibrils, which are about 6–10 nm thick and 
up to several micrometers long [Khurana et al., 2003]. 
Amyloid fibrils result in the same X-ray refraction pattern 
and are detectable via binding of Congo Red and Thiofla-
vin T dyes [Eanes and Glenner, 1968; Kuznetsova et al., 
2012; Wu et al., 2012; Girych et al., 2016]. Other more 
general characteristics of amyloids include their resis-
tance toward proteases and ionic detergents, and a nucle-
ation-mediated growth, which is mostly homogeneous 
but can be heterogeneous at lower levels [Soto and Casta-
ño, 1996; Šarić et al., 2014; Törnquist et al., 2018]. This 
latter feature makes it interesting for potential cross-in-
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Fig. 1. Different functions of amyloid proteins related to plant microbial communities at different stages of amy-
loid structural conformations.
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teractions between amyloids of different species. Addi-
tionally, the study of antimicrobial properties of many of 
the known amyloids, including pathology-associated 
ones, has gained a lot of traction in recent years [Soscia et 
al., 2010; Kagan et al., 2011; Spitzer et al., 2016; Gosztyla 
et al., 2018; Martin et al., 2018]. Pore formation and gen-
eral non-specific and irreversible interaction with phos-
pholipid membranes have been proposed as mechanisms 
for antibiotic activity [Butterfield and Lashuel, 2010; Last 
and Miranker, 2013].

Initially, amyloids were investigated as the etiological 
agent of many neurodegenerative diseases [Muchowski, 
2002]. However, over the last two decades, they have been 
increasingly studied in the context of their prevalence in 
many physiological processes in all three domains of life 
including bacteria, archaea, and eukarya [Levkovich et al., 
2021]. Many amyloids that impact both virulence and 
survival in prokaryotes have been described [Antonets et 
al., 2020]. Thus, to distinguish pathogenic amyloids from 
the latter they are commonly referred to as functional am-
yloids in the literature [Badtke et al., 2009]. In Figure 2, 
the larger increase in recent years in publications contain-
ing the keyword “amyloid” related to functional as com-
pared to those lacking the term “functional” is evident.

The characteristics of amyloids already mentioned, in-
cluding resilience, heterogeneity, nucleation, and antimi-
crobial activity, underscore many of their physiological 

functions in plant-associated microbial communities. 
Here, we discuss in the context of plant colonization the 
history and recent developments of functional amyloids 
associated with bacterial survival strategies in host-asso-
ciated and host-related communities. We classify these 
strategies into two main groups: structural modifications, 
which include biofilm and hydrophobic surface forma-
tion, and defense through antimicrobial activity. Lastly, 
miscellaneous plant niche-related functions are de-
scribed, which include amyloids that regulate diverse as-
pects of their hosts survival and which do not fit within 
the other two categories. A visual summary of all of these 
functions is shown in Figure 1 and representative pro-
teins mentioned in this mini-review are summarized in 
Table 1.

Structural Modifications of Microbial Amyloids

Biofilm Formation
Biofilms are complex microbial communities formed 

by the cooperation of single or multiple species that ad-
here to a surface and each other, secreting an extracellular 
matrix (ECM) [Dragoš and Kovács, 2017]. They repre-
sent one of the most widespread strategies for bacterial 
virulence and proliferation in the microbial world. Bio-
films naturally exist in diverse niches of plants in both the 
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Fig. 2. Comparison of publications per year 
with the keyword “amyloid” and the pres-
ence/lack of the term “functional” as found 
in the PubMed Central (PMC) database as 
of December 30, 2020. Trend lines drawn 
over scatter plot with local regression based 
on the LOESS method.
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phyllosphere and rhizosphere and are accountable for a 
large part of all activity of bacteria in nature [Hall-Stood-
ley et al., 2004]. The ECM is composed of proteins, extra-
cellular DNA, and polysaccharides, which in addition to 
maintaining microbial adhesion, protects the community 
and mediates interaction with the environment, includ-
ing the host [Branda et al., 2005]. Within biofilms, com-
mon goods can be freely shared and bacteria are protect-
ed against harmful chemical and physical events, such as 
antimicrobials or displacement by rain [Patel, 2005; Ar-
naouteli et al., 2016]. The ECM components of biofilms 
are diverse in function and their composition varies for 

different microbial species [Flemming and Wingender, 
2010]. However, the protein component is often consis-
tently comprised of a single protein which forms a mesh 
of functional amyloid fibrils [Erskine et al., 2018a]. The 
main role of these fibrils is to build the scaffold on which 
the stationary cells and other ECM components rest. Ad-
ditionally, it gives a greater degree of resilience to the 
structure, as mature fibrils are resistant to thermal and 
chemical denaturing conditions, including proteases. 
This helps to maintain the integrity of biofilms in a com-
petitive environment, such as the extracellular compart-
ments inside of plants, where these stresses are common 

Table 1. Representative microbial, plant amyloids, and related proteins with a role in plant-associated microbial communities

Main function Protein Organism Localization Additional comments References

Biofilm  
formation

CsgA
CsgB

Escherichia coli
Salmonella enterica

Extracellular Virulence promotion
Quorum sensing

[Barnhart and Chapman, 
2006]

TasA Bacillus species Extracellular Antibacterial
Membrane stabilization
Quorum sensing

[Stöver and Driks, 1999; 
Romero et al., 2010]

FapC Pseudomonas species Extracellular Cell surface adhesion
Quorum sensing

[Dueholm et al., 2013; 
Rouse et al., 2018a]

Hydrophobic  
layer formation

MPG1 Magnaporthe oryzae Extracellular
Cell wall

Surface detection
Spore attachment

[Kershaw et al., 1998; 
Pham et al., 2016]

BslA Bacillus subtilis Extracellular Self-assembling protein that coats 
Bacillus biofilms

[Kovács et al., 2012; 
Hobley et al., 2013]

Chaplins Streptomyces coelicolor Extracellular
Cell wall

Surface attachment [Elliot et al., 2003;  
Bokhove et al., 2013]

Hum3
Rsp1

Ustilago maydis Extracellular
Cell wall

Shields fungus from the plant  
immune system

[Müller et al., 2008]

Antimicrobial 
activity

Microcin
E492

Klebsiella pneumoniae Extracellular Amyloid fibrils act as a reservoir for 
antimicrobial peptides

[Bieler et al., 2005; 
Shahnawaz and Soto, 
2012]

Prohevein Hevea brasiliensis Extracellular Latex tree antifungal peptide [Berthelot et al., 2016]

Cn-AMP2 Cocos nucifera Extracellular Antimicrobial peptide from coconut [Gour et al., 2016]

RsAFP-19 Raphanus sativus Extracellular Antifungal peptide from radish [Garvey et al., 2013]

Plant virulence 
promotion

Harpins Xanthomonas species
Erwinia amylovora
Pseudomonas syringae

Extracellular
Cell wall

Effector translocation
Plant hypersensitive response
Plant cell toxicity

[Oh et al., 2007;  
Choi et al., 2013]

RTP1p Uromyces fabae Extracellular
Haustorium

Structural and stabilizing role [Kemen et al., 2013]

Signaling NLR amyloids Filamentous fungi and  
bacteria

Membrane and 
cytosolic 
components

Non-self recognition [Loquet and Saupe, 2017; 
Dyrka et al., 2020]

Plant symbiosis 
promotion

RopA and RopB Rhizobium leguminosarum Outer membrane
Extracellular

Soluble forms are membrane proteins [Kosolapova et al., 2019]

NLR, Nod-like receptor.
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[Taglialegna et al., 2016]. Functional amyloids in associa-
tion with biofilms have been studied in many different 
microbial species, the majority of them focusing on bac-
teria. Herein, we summarize the well-documented ones 
and their involvement in plant colonization.

Curli is the most studied biofilm-associated amyloid 
and was the first to be described [Olsen et al., 1989]. It is 
produced by, among others, the enteric bacteria Esche-
richia coli and Salmonella enterica, which are also found 
in the environment and are well prepared to form bio-
films on plants [Danhorn and Fuqua, 2007; Carter et al., 
2016; Pruteanu et al., 2020]. The major subunit protein of 
curli is CsgA, composed of five repeat units with con-
served glutamine and asparagine residues important for 
amyloid formation [Wang et al., 2010]. Curli plays an im-
portant role in the adhesion and promotion of biofilm 
onto different phyllosphere surfaces, including various 
economically important crops [Jeter and Matthysse, 
2005; Boyer et al., 2016]. Moreover, curli is involved in 
many aspects of the biology of its producer, including vir-
ulence promotion, and it is regulated through quorum 
sensing [Smith et al., 2017; Saxena et al., 2019]. Curli has 
been determined in addition as an important virulence 
factor in Shigatoxigenic E. coli on fresh produce of crops 
and therefore represents a serious risk to human health 
through ingestion of uncooked vegetables [Merget et al., 
2019]. How far curli stabilizes biofilms on plants and how 
much it promotes resistance to biofilms of E. coli to me-
chanical stresses and removal by solvents is still under 
debate and an important topic in food security.

The formation of Bacillus biofilms in the rhizosphere 
and phyllosphere is associated with plant growth promo-
tion [Hashem et al., 2019]. The major proteinaceous 
component of this biofilm is TasA, which forms amyloid 
fibrils and provides integrity to the ECM [Romero et al., 
2010]. Despite claims to its non-amyloidogenic nature, it 
is still widely considered to be a functional amyloid [Ers-
kine et al., 2018b]. TasA was also shown initially to be 
antibacterial [Stöver and Driks, 1999]. However, whether 
this function is associated with its capacity to form an 
amyloid structure is not known. Recently reported func-
tions of this amyloid not related to biofilm formation in-
clude its potential contribution to membrane stabiliza-
tion during the stationary phase of the cell and its role in 
community signaling [Steinberg et al., 2020; Cámara-
Almirón et al., 2020]. Overall, TasA promotes many as-
pects of the fitness and survival of plant-associated Bacil-
lus species.

Biofilm formation in the roots by some members of 
Pseudomonas, like Pseudomonas fluorescens and Pseudo-

monas putida, is also associated with plant growth pro-
motion [Meliani et al., 2017]. Pseudomonas species se-
crete the functional amyloid protein (Fap), which con-
tributes to stable and robust biofilm formation and 
renders protection against chemical and mechanical 
stresses [Ueda and Saneoka, 2015; Zeng et al., 2015; 
Rouse et al., 2018b]. The major amyloid fibril component 
in Pseudomonas’ biofilm is FapC [Dueholm et al., 2010]. 
It presents three imperfect repeats of a glutamine- and 
asparagine-rich domain that are responsible for the for-
mation of very stable amyloid fibrils [Rasmussen et al., 
2019].

All of these biofilm amyloids require unique and intri-
cate pathways with numerous intermediate enzymes and 
safety stops that keep aggregation under control [Balis-
treri et al., 2020], as its unintended trigger in the cyto-
plasm would overwhelm chaperones and lead to cell 
death [Landreh et al., 2015]. Additionally, there are usu-
ally two or more proteins that are directly responsible for 
amyloid formation: the major subunit protein that makes 
up most of the fibril’s weight but is unable to polymerize 
on its own, or does so slowly, and the minor subunit that 
acts as a nucleator. This strategy is found, for example, in 
curli, where CsgA and CsgB fulfill those roles, respective-
ly [Hammer et al., 2007; Yan et al., 2020].

The dependence on amyloid fibrils for biofilm con-
struction makes them a central target for interference by 
plants in order to keep infection under control. Plant 
polyphenols and flavonoids, in particular, have been 
shown to inhibit the development of bacterial biofilms 
through the blocking of amyloid formation in several dis-
tinct bacterial species [Najarzadeh et al., 2019; Pruteanu 
et al., 2020]. Interestingly, rather than a broad anti-amy-
loidogenic effect, they target amyloids produced by spe-
cific bacterial species. This is in accordance with the re-
ported benefits of some bacterial biofilms in the promo-
tion of plant fitness, which therefore may be preferred by 
the plant over others.

The widespread occurrence of functional amyloids in 
their association with biofilm-forming pathogenic and 
beneficial microbes emphasize their significance in mi-
crobe-microbe and microbe-host interactions. Further 
studies are required to decipher their role in plant-asso-
ciated microbes, which could lead to the development of 
novel strategies for plant disease management particu-
larly through probiotics based on mixed cultures that 
could gain resilience under harsh natural conditions 
through amyloid-stabilized surface attachment.
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Hydrophobic Surface Formation
Another class of structural modifications that are re-

lated to microbial survival in the plant holobiont includes 
hydrophobic layer formation by surface-active proteins. 
Surface-active proteins modify the properties of physical 
interfaces and are often linked to an amyloid structure 
[Sunde et al., 2016]. In fungi, these are called hydropho-
bins and are known to play an active role in plant-fungi 
interactions that favor virulence [Teertstra et al., 2009]. 
Proteins with a similar function as fungal hydrophobins 
have also been described in some filamentous bacteria. In 
Streptomyces coelicolor, the protein family of chaplins is 
composed of amyloids that play a role in the formation of 
aerial mycelia and attachment to surfaces [Elliot et al., 
2003]. They respectively perform these roles in two dis-
tinct amyloid morphologies, the first formed at water-air 
interfaces, and the second formed in solution [Bokhove 
et al., 2013]. In Bacillus subtilis, the protein BslA is known 
to coat TasA-formed biofilm in a thin hydrophobic layer, 
which helps maintain impermeability and repellency 
[Kobayashi and Iwano, 2012; Bromley et al., 2015]. BslA 
is self-assembling, but in contrast to fungal hydropho-
bins, is not described as amyloidogenic in nature [Liu et 
al., 2017]. Both Streptomyces and Bacillus species are soil-
dwelling bacteria associated with plants and have been 
shown to promote their growth and protect them against 
phytopathogens [Hashem et al., 2019; Kim et al., 2019].

Some Streptomyces species such as S. scabies have be-
come serious crop pathogens where the ability to colonize 
plant niches including the secretion of plant hormones 
has become a virulence factor [Li et al., 2019]. The role of 
functional amyloids in such lifestyle shifts has been poor-
ly studied and might in the future become an important 
target to study the transition from symbionts and faculta-
tive pathogens to obligate pathogens. In the obligate bio-
trophic plant pathogenic fungus Ustilago maydis two se-
creted candidate effectors Hum3 and Rsp1, a hydropho-
bin and a hydrophobic repeat-rich protein, are tightly 
bound to the cell wall and form amyloid-like fibrils that 
influence the surface hydrophobicity [Müller et al., 2008]. 
It was proposed that they play a role in shielding the fun-
gal hyphae from the plant immune system [Lanver et al., 
2017]. For obligate biotrophic fungi, the integrity of the 
host is crucial for their successful manifestation and the 
completion of their pathogen life cycle. The obligate rust 
fungus, Uromyces fabae, delivers the filament-forming 
protein RTP1p, via sub-compartments of the haustorium 
into the host cytoplasm where it plays a structural and 
stabilizing role [Kemen et al., 2005, 2013]. RTP1p has 
therefore been hypothesized to be a haustorial cell wall 

protein that extends the intracellular lifespan of the 
pathogen. Amyloid effector proteins may therefore rep-
resent a tool for extending the biotrophic phase and pro-
tecting the haustorium from the plant defenses even un-
der conditions where cell death has been initiated by the 
host. If and how this is related to the green islands that 
can be observed when endophytes colonize plant leaves is 
a future topic of debate [Wemheuer et al., 2019].

In other filamentous phytopathogenic fungi, hydro-
phobin functions that promote virulence and pathoge-
nicity include spore dispersal, attachment to hydropho-
bic surfaces, and immune evasion. Hydrophobins act as 
surfactants that break surface water tension and maintain 
a hydrophobic exterior to allow aerial hyphae to develop 
and prevent its desiccation [Linder et al., 2005]. This also 
helps with better dissemination as dry spores are lighter 
and carried farther away [Beever and Dempsey, 1978; 
Wessels, 1996]. Hydrophobins also contribute to surface 
detection and spore attachment to the hydrophobic leaf 
surface. Such is the case of the hydrophobin MPG1 from 
the pathogen Magnaporthe oryzae in rice [Kershaw et al., 
1998], whose amyloid aggregation is triggered by a sur-
face-driven mechanism [Pham et al., 2016]. Hydropho-
bins may also help mask spore epitopes recognized by the 
plant and thus evade immune detection [Aimanianda et 
al., 2009; Carrion et al., 2013; Marcos et al., 2016].

These hydrophobic coatings can also be understood as 
a way to prevent bacterial colonization from water drop-
lets. They discourage accumulation and adsorption onto 
the surface, therefore effectively inhibiting bacterial ad-
hesion and thus biofilm formation onto the hyphae, 
spores, or other biofilm surfaces [Wick et al., 2007; Artini 
et al., 2017]. In fact, new developments in antibacterial 
surfaces with application in, for example, medical devic-
es, include the use of recombinant hydrophobins to pre-
vent biofilm attachment [Wang et al., 2017; Berger and 
Sallada, 2019; Devine et al., 2019; Sorrentino et al., 2020].

Antimicrobial Properties of Amyloids

Many already known antimicrobials have been associ-
ated in their activity with their capacity to assemble amy-
loid structures, including mammalian Protegrin-1 and 
amphibian Uperin 3.5 [Jang et al., 2011; Martin et al., 
2018; Salinas et al., 2020]. The bacterial microcin E492 
produced by Klebsiella pneumoniae, a soil and plant 
dwelling bacterium, has been described as amyloid. This 
microcin is an antibacterial peptide that kills bacteria 
through the formation of channels that disrupt mem-
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brane permeability and mannose metabolism [Biéler et 
al., 2010]. Another interesting aspect of this amyloid is 
that mature fibrils act as an inert reservoir for the toxic 
peptide. After triggering through external factors, such as 
low pH, small soluble oligomers are released, which are 
then responsible for its toxicity [Bieler et al., 2005; Shahn-
awaz and Soto, 2012].

On the plant side, certain defense-related peptides 
have been shown to exhibit amyloid-like properties in vi-
tro. These include prohevein from Hevea brasiliensis, a 
wound-induced peptide whose C-terminus exhibits ag-
glutination of pathogenic organisms [Berthelot et al., 
2016]. Other antimicrobial amyloid peptides from plants 
include Cn-AMP2 from Cocos nucifera, an antimicrobial 
from coconut water effective against gram-positive and 
gram-negative bacteria, and RsAFP-19, an antifungal de-
fensin from Raphanus sativus [Mandal et al., 2009; Gour 
et al., 2016]. Interestingly, the fungicidal activity of the 
latter is negatively correlated with its aggregation level. 
This seems to suggest that one of its roles is to act as a de-
coy for the inactivation of toxic oligomeric intermediates 
from competitors into non-active fibrils [Caughey and 
Lansbury, 2003; Bieler et al., 2005].

The antimicrobial nature of amyloids is a topic of re-
search with many implications for their potential use in 
human health. Particularly interesting would be the ap-
plications of such antimicrobial peptides against multi-
drug-resistant bacteria, for which targeted antibiotic re-
sistance is an increasing problem [Wise et al., 1998]. Since 
the mechanism of most antimicrobial peptides, including 
antimicrobial amyloids, is not linked to a specific target 
but rather to irreversible binding and disruption of mem-
branes, mechanisms of resistance are less likely to evolve 
[Mwangi et al., 2019]. Additionally, there is a need for 
antimicrobial compounds with little environmental im-
pact for their use in agriculture [Montesinos and Bardají, 
2008]. However, their applicability in both of these 
branches is hindered by the lack of understanding of what 
makes some antimicrobial amyloids more cytotoxic than 
others [Voth et al., 2020].

How antimicrobial amyloid producers defend against 
their own peptides is not known and probably varies 
among specific amyloids. As already mentioned, a com-
plex system of chaperones ensures that there is no aggre-
gation in the cytoplasm and the protein is in a state ready 
for translocation across the membrane [Sugimoto et al., 
2018]. Additionally, external conditions also trigger am-
yloid-dependent antimicrobial activity and therefore 
may help to direct its action through two main mecha-
nisms. The first is conformational change into an amyloid 

structure that leads to a more toxic protein, for example, 
human Serum amyloid A, which is active only at the skin 
surface because of its sensitivity to lower pH [Zheng et al., 
2020]. The second is due to the shedding of soluble oligo-
mers from mature fibrils that may themselves be toxic, as 
is the case of microcin E492 [Shahnawaz and Soto, 2012]. 
Very little is known about toxic amyloid proteins in the 
plant microbial community. Such as microbes on the hu-
man skin, microbes in the plant apoplast face a low pH 
(healthy skin pH 5.4 to 5.9, plant apoplast pH 5 to 6) that 
can quickly get more alkaline upon stress [Geilfus, 2017]. 
These changes might have a severe impact on amyloid 
toxicity and functionality as described above for human 
Serum amyloid A and require a high degree of adaptation 
by the microbes [Zheng et al., 2020]. Identifying antimi-
crobial amyloids that react to pH shifts in plants might be 
key to identify novel antimicrobial compounds that do 
not harm the natural microbiota but do protect from spe-
cific pathogens.

Virulence, Signaling, and Symbiosis in Microbial 
Amyloids

Finally, we describe three classes of amyloids that are 
not directly related to structural or antimicrobial func-
tions that have been described in plant-associated micro-
bial communities. These include plant toxicity and hy-
persensitive response promotion by harpins, non-self 
recognition in filamentous fungi and bacteria, and root 
symbiosis promotion.

The harpins are a family of heat-stable proteins pro-
duced by the phytopathogenic bacteria Xanthomonas 
spp., Erwinia amylovora, and Pseudomonas syringae [Oh 
et al., 2007]. These proteins are associated with the pro-
motion of virulence through several amyloid-related 
mechanisms: bacterial effector translocation, induction 
of plant hypersensitive response, and cytotoxicity against 
plant cells [Choi et al., 2013]. Harpin’s ability to induce 
hypersensitive response was correlated to its capacity to 
form amyloid fibrils in vitro [Oh et al., 2007]. The cyto-
toxicity mechanism is believed to be due to the formation 
of beta sheet-rich pores that bind to membranes and 
cause depolarization in plant cells [Pike et al., 1998].

The role for non-self-recognition and programmed 
cell death of amyloids has been described in filamentous 
fungi [Glass and Dementhon, 2006]. Small amyloid mo-
tifs act as a signaling mechanism that works by linking 
receptor and activator protein domains through a tem-
plating fold, leading ultimately to cell death [Loquet and 
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Saupe, 2017]. Nod-like receptor-associated amyloid sig-
naling motifs have been recently discovered in filamen-
tous bacteria, termed BELL and BASS [Dyrka et al., 2020]. 
They are loosely homologous to the animal, plant, and 
fungi Nod-like receptors and are proposed to act through 
similar amyloid-templating mechanisms [Saupe, 2020]. 
Non-self-recognition plays a role in maintaining patho-
gen diversity and therefore promoting the exchange of 
pathogenic traits important for survival against an ever-
evolving plant immune system [Ishikawa et al., 2012].

There are fewer reports of functional amyloids con-
cerning symbiotic interactions, probably because re-
search effort is biased toward pathogenic and virulence-
promoting mechanisms. RopA and RopB are two recent-
ly described proteins from Rhizobium leguminosarum, 
which display amyloid formation linked to microbe-host 
symbiosis [Kosolapova et al., 2019]. These proteins show 
structural similarity and are predicted to be outer mem-
brane porins in their soluble forms. Their expression cor-
relates with the formation of capsules, extracellular struc-
tures associated with stationary growth, in this root nod-
ule bacterium. Kosolapova et al. [2019] speculate on its 
role in the establishment of plant-microbial symbiosis 
through the observation of enhanced expression after the 
addition of a plant flavonoid.

Conclusion

Amyloid proteins have crucial properties that make 
them suitable to fill diverse roles in the bacterial and fun-
gal survival of plant-associated communities. Their ca-
pacity to polymerize into very resistant fibrils helps them 
withstand the stresses associated with plant colonization. 
This is highlighted by the many amyloid biofilm-forming 
proteins, including curli, Fap, and TasA. Additionally, 
the tendency of small soluble oligomers to interact with 
membranes and depolarize them makes them a common 
structure among antimicrobial and cytotoxic peptides. In 
this mini-review, we have also discussed amyloids that 

take part in symbiosis, signaling, and virulence mecha-
nisms. Such a plethora of functions, with what is at the 
core the same fold, hints at yet to be discovered interac-
tions. Potential cross-seeding among different amyloids 
in microbial communities, like the plant microbiome, 
may have a big impact on bacterial survival and disease. 
Recent examples from human health about the involve-
ment of bacterial amyloids in the seeding of pathogenic 
amyloids give us a hint of this untapped potential [Javed 
et al., 2020; Sampson et al., 2020]. All in all, understand-
ing proteins in the context of their amyloid structure and 
cross-interactions will improve our understanding of the 
ecology of plant-associated microbial communities and 
help to develop new methods relevant to human medi-
cine and pest biocontrol.
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