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Chapter 7
Nature’s Protectors: A Biofilm Perspective 
on Bacterial Disease Control in Plants

Daniel Gómez-Pérez, Leonie M. Zott, Monja Schmid, and Vasvi Chaudhry

Abstract Bacterial diseases significantly threaten agricultural productivity, neces-
sitating innovative and sustainable approaches to disease management. Above- and 
belowground biofilms are essential in mitigating plant bacterial diseases. We exam-
ine aboveground biofilms, primarily located on leaf surfaces, for their ability to 
form protective barriers and produce antimicrobial compounds, thereby impeding 
the establishment of pathogenic bacteria. Concurrently, we explore belowground 
biofilms in the rhizosphere for their contributions to nutrient cycling, enhanced 
nutrient uptake, and the deployment of biocontrol agents against soilborne bacterial 
pathogens. Here, we employ a multidisciplinary approach by integrating molecular, 
microbiological, and ecological analyses to unravel the mechanisms underlying the 
formation and function of these beneficial biofilms. We investigate quorum sensing, 
microbial communication, and the intricate interplay between plant hosts and ben-
eficial microbes to elucidate the complex networks orchestrating disease resistance. 
We consider environmental factors such as surface structure, temperature, and nutri-
ent availability. We acknowledge their impact on biofilm-mediated disease manage-
ment strategies relevant for controlling plant disease. Furthermore, we emphasize 
the importance of microbial diversity within biofilms for its role in enhancing plant 
resilience to bacterial diseases. Overall, this chapter provides a foundation for 
developing targeted and sustainable strategies in bacterial disease management, 
underpinning the critical role of above- and belowground beneficial biofilms. 
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Insights gained from beneficial biofilms contribute to the fundamental understand-
ing of synergistic relationships in the plant microbiome environment and their 
implications for sustainable agriculture

Keywords Biofilm · Quorum Sensing · Amyloids · Biocontrol · Phyllosphere · 
Rhizosphere

7.1  Introduction

Feeding the fast-growing human population, which will reach approximately 9.5 bil-
lion by the year 2050 (OECD 2012), will pose challenges for food and agricultural 
scientists in the coming decades. Global crop production faces alarming threats from 
both abiotic and biotic stresses, which are increasingly exacerbated by the effects of 
climate change (Teshome et  al. 2020). Regarding biotic factors, plants are under 
constant attack from diverse organisms, including fungi, bacteria, oomycetes, nema-
todes, and herbivores. It is essential to mitigate plant disease to produce nutritionally 
improved food in sufficient quantities for the rapidly growing global population. 
Several disease control approaches are helpful in the management of plant diseases, 
including crop rotation, resistance breeding, and the use of biological control sub-
stances. Regarding the latter, commonly used are chemical fertilizers and pesticides 
to improve crop quality and quantity. However, these methods carry disadvantages, 
including disruption of ecosystems and downstream contamination (Aktar et al. 2009).

Plant disease occurs due to the complex interaction of a pathogen and its host 
plant. Within the plant-associated microbial diversity, only a fraction of the microbes 
are considered pathogenic, while the majority of them are beneficial and promote 
host plant growth and its fitness (van Elsas et al. 2012; Mendes et al. 2013; Philippot 
et  al. 2013). Detrimental microbes have adapted to infect plants as specialized 
pathogens, causing numerous diseases and severely damaging crop plants. These 
are a serious concern to agriculture and crop productivity as they are directly respon-
sible for crop losses (Mansfield et al. 2012). Therefore, the understanding of plant–
pathogen interactions paves the way for disease management.

The percentage of bacterial phytopathogens causing plant diseases can vary signifi-
cantly based on numerous factors, including geographical region, crop type, agricul-
tural practices, and environmental conditions. Phytopathogens of bacterial origin are 
responsible for a notable portion of plant diseases; generally, it is estimated that bacte-
rial phytopathogens contribute to roughly 10–20% of plant diseases worldwide. Factors 
such as the pervasiveness of specific pathogens, crop susceptibility, and climate condi-
tions can influence the prevalence of bacterial diseases in plants. Bacterial phytopatho-
gens pose a significant threat to agricultural production as plant diseases that trace their 
etiology to bacteria amount to a large percentage of all crop losses (Savary et al. 2019). 
Amid these challenges, innovative approaches such as the harnessing of biofilms have 
emerged as sustainable means to protect crops from bacterial pathogens.
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7.2  Plant–Microbe Interactions: Mechanisms of Pathogen 
Success and Host Defense

Plants frequently encounter pathogenic microbes that challenge their growth and 
development throughout their life cycle. The intricate innate immune system in plants 
safeguards against the proliferation of harmful microbes, employing two intercon-
nected defense mechanisms rooted in pathogen detection. These defense strategies 
encompass microbe-associated molecular pattern (MAMP)-triggered immunity and 
microbial effector-triggered immunity (ETI). Both MAMP and ETI responses activate 
multiple defense mechanisms to restrict pathogen invasion, safeguard the plant against 
pathogens, and curtail their growth (Thrall et al. 2007; Pieterse et al. 2014; Rodriguez 
et al. 2019). After exposure to pathogens, plants often develop immunological mem-
ory, leading to systemic acquired resistance. In contrast to their interactions with 
harmful microbes, plants establish and promote symbiotic relationships with benefi-
cial microbes to fortify their immune system. The success of bacterial phytopathogens 
can be attributed to several factors, including their ability to colonize the plant, evade 
its defense mechanisms, and obtain essential nutrients for growth and reproduction. 
Bacterial pathogens also exhibit less specific physiological adaptations to ensure sur-
vival outside the host plant, which include metabolic responses to abiotic stress. Some 
of these are based on the production of exopolysaccharides, which can protect against 
desiccation and cold, and pigments, which protect against ultraviolet (UV) radiation.

Bacterial pathogens cause disease symptoms, including leaf spots, blights, can-
kers, and wilts. Notable bacterial pathogens, including species of Xanthomonas, 
Pseudomonas, Agrobacterium, Ralstonia, Erwinia, and others, are known to cause 
diseases in a wide range of crops, affecting agriculture globally (Mansfield et  al. 
2012). Bacterial diseases impact crops significantly, leading to yield losses and 
affecting food security. Bacterial phytopathogens have adapted in response to devel-
opments in plant resistance, resulting in an evolutionary arms race (Wang et al. 2021). 
This has led to several strategies for successful infection, including the expansion of 
effectors released through the type III secretion system in Gram- negative bacteria 
(Tang et al. 2006). The latter encompass some of the most important groups of bacte-
rial phytopathogens, the Pseudomonas syringae’s pathovars (pv.) (Chen et al. 2022).

The entry of bacterial phytopathogens into plants determines their fitness and 
disease development. Pathogens typically penetrate plants through natural open-
ings, such as stomata and hydathodes, wounds, or by using specialized mechanisms 
such as the secretion of enzymes or toxins that facilitate their entry into plant tissues 
(van der Wolf and De Boer 2014). Some pathogens can swim or move along mois-
ture gradients to reach these openings. Wounds on plant tissues, caused by mechani-
cal damage from herbivore feeding, also act as entry points for bacteria to infect 
plants. Some bacterial phytopathogens secrete enzymes such as cellulases and pec-
tinases that break down the structural barriers and degrade plant cell walls, allowing 
them to penetrate plant tissues. Some bacterial phytopathogens have evolved mech-
anisms to bypass plant defenses inside plant tissues (Abramovitch and Martin 2004).

Advancements in understanding these pathogens, improved disease management 
practices, and the development of resistant crop varieties are essential for 
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minimizing the impact of bacterial phytopathogens on plant health and agricultural 
productivity. In addition, the plant microbiome plays a key role in controlling and 
regulating the virulence of these phytopathogens (Gao et al. 2021). Plants have been 
shown to actively recruit bacteria from their environment to overcome and prevent 
disease (Liu et al. 2021). Similarly, dysbiosis in the phyllosphere, which refers to 
the lack of stability in the microbiota composition, has been associated with a higher 
likelihood of infection (Gong and Xin 2021). The mechanisms by which microbes 
can control pathogen-prone bacteria in the plant include direct inhibition of these 
through, for example, the release of antimicrobials or indirectly boosting plant 
defenses (Legein et al. 2020).

7.3  Microbial Adaptation: From Planktonic Cells 
to Biofilm Communities

Microbes can remarkably transform and adapt to their environments by converting 
key nutrients and energy into accessible forms for survival. Well-adapted microbes 
participate in many microbe–microbe and microbe–environment interactions. In 
nature, microbial cells exist as solitary planktonic cells or are assembled into struc-
tured codependent communities known as biofilms. This transition from planktonic 
to biofilm is a widespread phenomenon observed in the environment and in bacteria 
associated with hosts such as humans, animals, and plants (Jefferson 2004). Biofilms 
consist of either single- or multispecies communities that join forces to promote their 
survival. Biofilms are a dominant form of microbial lifestyle that can persist for many 
generations wherein microbial communities are shaped by common evolutionary 
pressures (Steenackers et al. 2016). The community performs different tasks through 
stable co-occurrence, intercellular interactions, and communication, which can hardly 
be attained by free-living microbes (Moons et al. 2009). Biofilms impact different 
fields of study, from clinical and plant infection to beneficial colonization in humans 
and plants. Compared to monospecies biofilms, multispecies biofilms with a complex 
mix of prokaryotes and eukaryotes are predominant and, in general, exhibit higher 
stability (Costerton et al. 1987; León-Romero et al. 2015; Flemming and Wuertz 2019).

Biofilm formation is a complex and dynamic process where microbial communi-
ties are embedded in a self-produced matrix with cell densities ranging between 
108–1011 cells/gram wet weight. Matrix components contribute > 90% of dry weight, 
whereas microbial dry weight accounts for < 10% (Flemming et al. 2016). This 
matrix forms during the attachment stage, stabilizing the interacting microbes 
within the biofilm (Jamal et al. 2018). The properties of biofilm microbial commu-
nities are distinct from those of free-living microbes due to their presence in a 
matrix (Berlanga and Guerrero 2016). Biofilms in natural settings develop viable 
but nonculturable subpopulation phenotypes that are successful in situ but some-
times fail in culture-based isolations. Predicting the conditions under which micro-
bial biofilm communities are successful or benefit the host remains challenging in 
microbiome research.
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7.4  Key Factors Governing Biofilm Formation

The formation of beneficial biofilms is a complex process mainly divided into four 
stages: (1) initial reversible attachment: adhesion of planktonic cells to the surface; 
(2) irreversible attachment: formation of microcolonies; (3) maturation stage: mac-
rocolonies formation and development of matured biofilm; and (4) dispersal stage: 
detachment of microbial cells. Different factors influence these steps, and their 
understanding is crucial for both applied and   fundamental aspects of microbial 
research (Fig. 7.1).

Fig. 7.1 Overview of the key factors influencing biofilm formation. Biofilm formation, whether in 
plants or on other surfaces, is a complex process, influenced by many biotic and abiotic factors. 
Biofilm community composition, attachment, and persistence are shaped by environmental condi-
tions and surface structure. Biofilm structure is, furthermore, determined by the producing 
microbes, their associated matrix, communication and attachment genes. eDNA extracellular 
DNA, AHL acyl-homoserine lactone, AI autoinducer (e.g., autoinducing Peptides AIP, AI-2), c-di- 
GMP cyclic diguanylate, sRNA small RNA. (Graphic created with BioRender.com)
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7.5  Bacterial Mobility and Adhesins

Bacterial mobility is considered an important factor for biofilm formation though its 
mechanism differs between strains and it is mostly required for the earlier stages of 
biofilm formation such as the initial attachment (Ahmad et  al. 2017a). Bacterial 
mobility is mostly facilitated by two types of proteins: flagella and fimbriae. Flagella 
are long, spiral structures on bacterial cell surfaces that facilitate movement in liquid 
media. They act like propellers, allowing bacteria to swim and navigate the liquid 
environment (Nakamura and Minamino 2019). On the other hand, fimbriae are 
short, straight projections on bacterial cytoplasmic membranes that enable limited, 
twitching motility of bacteria on surfaces. They also facilitate bacterial attachment 
and can be involved in the crawling or gliding motion on solid surfaces (Jin and 
Marshall 2020). Both flagella and fimbriae play crucial roles in bacterial mobility, 
allowing bacteria to adapt and respond to different environments. Bacterial cells first 
establish contact with a substrate surface through adhesins, which are specific cell 
membrane proteins that play a crucial role in the initial attachment. Once the initial 
interaction forms, adhesins help maintain a stable connection between the bacterial 
cell and the substrate surface. Adhesins or adhesin-like structures can be of a fim-
brial nature, like type IV pili, which aid in the adhesion of several Gram- positive 
bacteria (Piepenbrink and Sundberg 2016). Afimbrial adhesins are often secreted by 
Gram-negative bacteria via the type V secretion system. Type VIII secretion systems 
are used by Escherichia coli to secrete curli, amyloid-like adhesins (Leo et al. 2012).

7.6  Surface Characteristics

Plant surfaces available for biofilm colonization consist of a variable range of dif-
ferent microenvironments. Each type of plant tissue has a different surface struc-
ture, and bacteria must adapt their biofilm-forming strategies to the unique 
conditions and characteristics. The nature of the surface to which bacteria attach 
shapes biofilm development. In plants, surfaces colonized by bacterial biofilms 
include the leaves, stems, roots, seeds, and vasculature (Ramey et al. 2004). Bacteria 
may prefer specific surface characteristics based on hydrophobicity, charge, and 
roughness. In general, bacteria tend to form biofilms on moderately hydrophobic or 
hydrophilic surfaces, avoiding extremes, and prefer relatively rougher surfaces for 
increased attachment (Ahmad et al. 2017b; Zheng et al. 2021).

7.7  Cell–Cell Communication and Regulation

Formation of biofilms requires many individual microbial cells to work together 
toward the same goal. Microbes interact with each other through specialized com-
munication systems, known broadly as quorum sensing (QS). Bacteria use QS 
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molecules to communicate and coordinate with each other in monospecies and mul-
tispecies communities. QS allows bacteria to sense their population density and 
regulate gene expression accordingly (Miller and Bassler 2001). One of the best 
characterized QS systems consists in the response against N-acyl-homoserine lac-
tone molecules (AHLs). It is used, among others, by symbiotic rhizobia and during 
biofilm formation in plant-associated pseudomonads (Whitehead et al. 2001; Loh 
et al. 2002). Shrestha et al. (2020) showed that long-chain AHLs induce expression 
of several plant defense genes and also resistance to the bacterial pathogen P. syrin-
gae (Shrestha et al. 2020). In addition to AHLs, Gram-negative and Gram-positive 
bacteria engage in interspecific communication through autoinducer-2 (AI-2) mol-
ecules (Li and Nair 2012).

Apart from QS, other regulatory factors that govern biofilm formation include 
cyclic diguanosine-5′-monophosphate (c-di-GMP) signaling and small non-coding 
RNA (sRNA) release (Chambers and Sauer 2013; Fazli et al. 2014). These both bind 
and interact with a large number of effector molecules and gene targets, modifying 
the expression of many genes related to motility and biofilm formation. Ultimately, 
sRNAs and c-di-GMP, together with AI-2- or AHL-based QS, determine the bal-
ance between planktonic and biofilm stages in bacteria.

7.8  Extracellular Polymeric Substance Production

Bacteria in biofilms produce extracellular polymeric substances (EPS), which con-
sist of an intricate mix of lipids, polysaccharides, extracellular DNA (eDNA), and 
proteins (Yin et al. 2019). The composition of EPS can vary between species and 
influences the organization of the biofilm and its protective effect on plants (Fong 
and Yildiz 2015; Heredia-Ponce et al. 2021a, b). The EPS enables the adhesion and 
aggregation of cells, as well as retention of nutrients and water within the biofilm 
matrix (Flemming and Wingender 2010).

A major part of the proteinaceous component of the EPS is composed of proteins 
of amyloidogenic nature, meaning that they spontaneously form molecular amyloid 
structures. Amyloids play key roles in the integrity and functionality of biofilms, 
including those that are found in plants (Garcia et  al. 2011; Gómez-Pérez et  al. 
2021). The main function of amyloids is the establishment of a scaffold whereupon 
the rest of the EPS components and cells can be assembled. This is due to secreted 
amyloidogenic monomers aggregating and forming robust amyloid fibrils. Fibrils 
provide stability and resilience against environmental pressures since the mature 
filaments are highly resistant to chemical and thermal denaturation, as well as 
mechanical stress (Taglialegna et al. 2016). Furthermore, the monomeric state of 
some amyloids exhibits toxic properties. The amyloid fibrils in the biofilm can, 
therefore, also act as reservoirs for antimicrobial peptides, which may be liberated 
if needed (Syed and Boles 2014). This can be triggered by changes in the surround-
ing areas such as pH shifts, potentially caused by the arrival of bacterial pathogens. 
Although most components of the EPS are variable, amyloids are a ubiquitous cen-
tral part of biofilm formation for many microbes, most recently described for 
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cyanobacterial biofilms (Erskine et al. 2018; Frenkel et al. 2023). The synthesis of 
amyloids often entails the development of dedicated systems for their production 
since they carry the risk of cytoplasmic polymerization, leading to cell toxicity 
(Taglialegna et al. 2016).

Apart from playing several roles as part of the biofilm structure, such as nucle-
ation of amyloids and binding to hydrophobic surfaces, eDNA also contributes to 
the exchange of genetic information (Heijstra et al. 2009; Peterson et al. 2013; Gallo 
et al. 2015). The release of eDNA, similar to other aspects of the formation of bio-
films, is promoted by QS molecule signaling (Spoering and Gilmore 2006). The 
ability of cells within a biofilm to integrate eDNA enables genetic material exchange 
related to, for example, resistance to a particular antibiotic, allowing certain pheno-
types to quickly spread throughout the biofilm population (Bender et  al. 2022). 
Finally, other components of the EPS such as polysaccharides and lipids are also 
essential for ensuring the structural integrity and cohesion of the matrix (Karygianni 
et al. 2020).

7.9  Environmental Conditions

Various abiotic factors influence biofilm formation, including nutrient availability 
and environmental conditions. Nutrient-rich conditions may promote biofilm devel-
opment as bacteria utilize resources for growth and matrix production. However, in 
general, biofilms formed under nutrient-scarce conditions, such as in soil, are more 
prevalent and resilient than those formed under abundance conditions, likely as a 
way to promote survival in adverse conditions (Petrova and Sauer 2012).

Temperature and pH are both critical environmental factors affecting biofilm for-
mation. The optimal temperature for the production of biofilms varies per strain, but 
it is typically within the range of 25–37 °C. A lower temperature can decrease bac-
terial motility, reducing the first attachment phase and biofilm dispersal. The pH of 
the environment can affect the charge of surfaces, potentially reducing attachment, 
particularly in the initial phases of biofilm formation (Palmer et al. 2007). Generally, 
bacterial biofilm production is optimal under near-neutral pH. Extreme conditions 
relating to temperature or pH can both negatively affect biofilm production.

Relating to the microenvironmental conditions within the biofilm, oxygen and 
redox states can vary, influencing the diversity and abundance of bacterial species. 
Different bacteria may thrive in specific microenvironments within the biofilm 
structure, which is particularly relevant concerning multispecies biofilms (Mitri 
et al. 2011). In turn, biofilms have been shown to also directly impact their own and 
their host’s environmental conditions. For example, in a grass leaf, bacteria within 
biofilms have been shown to increase O2 levels and pH, decreasing the photosyn-
thetic potential of the plant (Zhang et al. 2022).

D. Gómez-Pérez et al.
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7.10  Beneficial Biofilms

The significance of beneficial biofilms associated with a plant host lies in their pro-
tective role for the contained bacteria against environmental stresses, including UV 
radiation, pH fluctuation, osmotic stress, and dehydration. The adaptive capability 
of biofilms enhances the resilience of bacterial communities, allowing them to 
thrive in diverse ecological niches. Though not just the microbes but also the host 
plant profit from the biofilm formation. The role of aboveground and belowground 
plant-associated biofilms in bacterial disease management is complex and has been 
the subject of increased research interest in recent years (Fig. 7.2). To study plant 
biofilms, it is often convenient to separately look at the microbial communities asso-
ciated with the aboveground (phyllosphere) and belowground (rhizosphere) parts of 
the plant (Fig. 7.3). In both habitats, a number of beneficial biofilm-forming bacte-
ria have been identified (Table 7.1).

Fig. 7.2 Publications per year relating to plant-associated biofilms. The plots depict the number 
of publications found in the PMC database with the keywords “biofilm” together with either 
“plant,” “root,” or “leaf” in the title and abstract per year (as of December 4th, 2023). The number 
of publications (n) is represented by each dot of the scatter plot and trend lines were drawn with 
local regression based on the LOWESS method
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Fig. 7.3 Comparison of belowground and aboveground beneficial biofilms in plants. In both envi-
ronments, beneficial biofilms are important for plant health and plant growth. Aboveground and 
belowground biofilms both offer pathogen protection and stabilize their respective microbial com-
munities. While belowground biofilms have primarily been reported to enhance nutrient uptake, 
aboveground biofilms are known to adapt their benefits to a varying environment. (Graphic created 
with BioRender.com)

Table 7.1 Summary of important biofilm-forming plant-beneficial microbes

Microbe Host plant
Colonization 
site Reference

Azospirillum sp. Cereals Root Burdman et al. (2000)
Bacillus 
amyloliquefaciens

Cucumber, 
maize, tomato, 
barley

Rhizosphere, 
root, seed, soil

Liu et al. (2014), Kasim et al. 
(2016), Wang et al. (2019), 
Hazarika et al. (2021)

Bacillus aryabhattai Tomato Root Haque et al. (2020)
Bacillus subtilis Tomato, 

Arabidopsis, 
lettuce, rice

Root, 
rhizosphere, 
seed

Luo et al. (2015), Arnaouteli 
et al. (2021), Sarti et al. (2023)

Bacillus pumilus Masson pine Roots Zhu et al. (2020)
Bacillus velezensis Tomato Root, leaf Stoll et al. (2021)
Bacillus sp. Maize Leaf Fessia et al. (2022b)
Paenibacillus polymyxa Peanut Seed Haggag and Timmusk (2008)
Pseudomonas aeruginosa Tomato Root Ghadamgahi et al. (2022)
Pseudomonas 
chlororaphis

Avocado Root Heredia-Ponce et al. (2021a, b)

(continued)
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Microbe Host plant
Colonization 
site Reference

Pseudomonas putida Maize, chickpea, 
tomato

Rhizosphere, 
root

Espinosa-Urgel et al. (2002), 
Ramos-González et al. (2005), 
Srivastava et al. (2008), Sun 
et al. (2017)

Pseudomonas synxantha, 
Pseudomonas 
brassicacearum

Arabidopsis Root Harting et al. (2021)

Pseudomonas sp. Tea Root Hazarika et al. (2021)
Rhizobium 
leguminosarum

Clover Root nodulation Janczarek et al. (2010)

Table 7.1 (continued)

7.11  Belowground Beneficial Biofilms

The rhizosphere is the region of soil influenced by root secretions and comprises a 
vast diversity of microorganisms. Being a microbially dense and diverse habitat, 
constant competition for niches and nutrients among root- and rhizosphere- 
associated beneficial microbes and pathogens is essential for the mechanisms 
behind protection (Lugtenberg and Kamilova 2009). It is a critical zone for benefi-
cial biofilms that can improve nutrient uptake, produce growth-promoting sub-
stances, and compete with pathogenic organisms for resources. Root biofilms are a 
complex and coexisting community of microorganisms that can form a protective 
layer on the root surface that interacts directly with the plant (Pandit et al. 2020). 
The biofilm-structured microbial communities attach to the plant root surface form-
ing a three-dimensional matrix (Castiblanco and Sundin 2016). Microbe–microbe 
interactions are essential for the stability and functional potential of root biofilms. 
These interactions can help maintain the structural integrity of the biofilm and regu-
late the diversity or evenness of the community of microbes that can carry out vari-
ous functions (Ajijah et al. 2023). For instance, some microbes focus on producing 
EPS that help bind the biofilm together. Besides, others produce antimicrobials that 
inhibit the growth of competing or “cheater” microorganisms. In addition, some 
microorganisms form symbiotic relationships with plant roots, providing the plant 
with essential nutrients and helping to promote plant growth. This specialization of 
bacterial cells within biofilms is known as division of labor and is a staple of bio-
films produced by many different bacteria (van Gestel et al. 2015). Root biofilms 
contribute to plant health by, for example, providing a protective barrier against 
pathogens, improving water and nutrient uptake, and facilitating the exchange of 
signaling molecules between the plant and the microbiome (Bogino et al. 2013). 
Finally, the root biofilm can also influence the plant’s tolerance to stress (Timmusk 
and Nevo 2011).

The successful root colonization and community assemblage by rhizosphere and 
root-associated microbial communities depend on critical steps, including uptake of 
plant metabolites, chemotaxis, cell motility, and biofilm formation (Trivedi et al. 
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2020). The colonized beneficial microbes on the root surface are crucial to ward off 
soilborne pathogens from invading the root (Soni and Keharia 2021). These 
microbes in the rhizosphere can directly inhibit pathogenic organisms by producing 
antibiotics or competing for space and nutrients. Bacillus is the most studied benefi-
cial microbial genus and usually colonizes plant roots as cell aggregates enclosed in 
a self-produced extracellular matrix, a biofilm (Arnaouteli et al. 2021). Multiple 
studies using fluorescence reporter and microscopy techniques have shown that bio-
film formation on roots by Bacillus strains involved in competition with plant patho-
gens leads to disease suppression (Chen et  al. 2013; Pandin et  al. 2017; 
Molina-Santiago et al. 2019; Xu et al. 2019; Berlanga-Clavero et al. 2022).

Competition for utilizing root and rhizosphere nutrients also significantly con-
fers pathogen suppression (Xia et al. 2022). One of the essential micronutrients is 
iron, which is highly abundant in soils but has low solubility and is unsuitable for 
microbial uptake, particularly in acidic environments (Lugtenberg and Kamilova 
2009). Therefore, iron bioavailability is a limiting factor and promotes nutrient 
competition among living microbes. Some microorganisms synthesize specialized 
iron-chelating compounds, siderophores, that restrict the available iron to pathogens 
and, hence, their growth (Dimopoulou et al. 2021; Ghazy and El-Nahrawy 2021; 
Lahlali et al. 2022). Members of Bacillus species synthesize iron-chelating com-
pounds, such as the bacillibactin siderophore (Yu et al. 2011).

Some Bacillus strains interact with plant roots, elicit induced systemic resistance 
(ISR), activate host defense responses, and induce the resistance of the entire plant 
against pathogenic bacteria and other pathogens (Kloepper et al. 2004). Examples 
of molecules from Bacillus that function as “elicitors” belong to lipopeptides, 
polyketides, exopolysaccharides, and volatile organic compounds. These activate 
salicylic acid, jasmonic acid (JA), or ethylene (ET) signaling pathways involved in 
priming the JA/ET-dependent defense-related genes, callose deposition, and stoma-
tal closure, and help the plant’s resistance against pathogen infection (Niu et al. 
2012; Gowtham et al. 2018; Vanthana et al. 2019). Root inoculation of B. velezensis 
SQR9 activated plant systemic resistance in Arabidopsis and reduced the disease 
incidence of the foliar pathogens P. syringae pv. tomato (Pst DC3000) and B. cine-
rea (Wu et al. 2018a, b).

Plant growth-promoting rhizobacteria (PGPR) associations in the rhizosphere 
and phyllosphere protect plants from pathogens and promote plant growth by facili-
tating robust biofilm formation and surfactin production (Bais et al. 2004; Hashem 
et al. 2019). By colonizing the root surface, some bacteria trigger ISR in aerial por-
tions of the plant (Kloepper et al. 2004). Research showed that pathogens like Pst 
DC3000 can induce root secretion in Arabidopsis thaliana, recruiting beneficial 
biofilm-formers such as Bacillus subtilis, which can then aid the plant in controlling 
the pathogen (Rudrappa et  al. 2008). P. syringae infection in A. thaliana leaves 
imparts chemical signals belowground through malic acid as root exudate secre-
tions. Further, P. syringae stimulates the root secretions of the tricarboxylic acid 
cycle pathway intermediate, L-malic acid, which selectively attracts beneficial rhi-
zobacterium B. subtilis FB17 by promoting its root colonization and biofilm 
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formation, which is dependent on the sensor histidine kinase KinD, specifically on 
the extracellular CACHE domain (Chen et al. 2012).

Another well-studied biofilm-forming genus that has been associated with a ben-
eficial effect for the plant is Pseudomonas. Strain KT2440 of P. putida forms bio-
films on maize roots, resulting in plant growth promotion and pathogen protection 
(Espinosa-Urgel et al. 2002). Another strain of P. putida, A1, has been shown to 
decrease bacterial wilt disease in tomato seedlings and to produce biofilms in vitro 
(Sun et al. 2017). P. aeruginosa strain FG106, isolated from the tomato rhizosphere, 
forms biofilms and exhibits broad-spectrum pathogen control, including antago-
nism against fungal diseases caused by Alternaria alternata and B. cinerea 
(Ghadamgahi et al. 2022).

Biofilm formation as monoassociation and in cooperative interaction of specific 
taxa can enhance the stability and effectiveness of these beneficial microbes. For 
example, a biofilm-deficient mutant strain of Bacillus pumilus was shown to have 
decreased biocontrol capacity against damping-off disease in pine when compared 
to the same strain with the capacity to form biofilms (Zhu et al. 2020). Some studies 
have shown that Bacillus species can modulate the native rhizosphere microbiome, 
which involves the stimulation of specific taxa exhibiting direct biocontrol activity 
and cooperative interactions with other beneficial microbes. Collectively, these 
modulations improve plant disease suppression (Tao et  al. 2020; Moreira et  al. 
2023). One such example is the cooperation by biofilm formation of beneficial 
Bacillus and Pseudomonas strains through metabolic cross-feeding where Bacillus 
assists Pseudomonas by providing valeric acid and levulinic acid and Pseudomonas 
in return provides branched-chain amino acids (Sun et al. 2021). In another study, 
cocultivation of B. velezensis with helper bacteria Flavobacterium showed enhanced 
biofilm formation under in vitro assay. Further, the study revealed that Flavobacterium 
improved B. velezensis biocontrol efficiency against Ralstonia solanacearum, caus-
ing tomato bacterial wilt to decrease, reducing the colonization of R. solanacearum 
in the rhizosphere, and increasing transcription of plant defense gene PR1α in 
tomato (Wang et al. 2023).

7.12  Aboveground Beneficial Biofilms

Compared to the rhizosphere, microbes exhibit a nonuniform distribution in the 
phyllosphere. In particular, on leaf surfaces, bacterial cells preferentially attach to 
specific locations, such as the base of trichomes, stomata, epidermal cell wall junc-
tions, grooves along veins, depressions, and beneath the cuticle (Beattie and Lindow 
1999; Lindow and Brandl 2003; Chaudhry et al. 2020). Bacteria are more abundant 
on the lower leaf surface, potentially due to reduced radiation exposure, a higher 
density of stomata or trichomes, and a thinner cuticular layer, creating favorable 
conditions for their survival and growth, increasing their likelihood of persistence 
compared to upper leaf parts (Karamanoli et al. 2012). There is a general lack of 
experimental evidence regarding resistance against biotic stresses, particularly 
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related to in vivo studies as outlined in (Fessia et al. 2022a). However, phyllosphere 
biofilms, analogously to rhizosphere biofilms, could act as a protective mechanism 
for plant growth and increased productivity. The main mechanism by which this 
could take place is by acting as a physical barrier that blocks biological niches or 
seals plant surface injuries potentially sought after by a pathogen to start an infec-
tion. This is related to the priority effect in ecology, which postulates that early- 
arriving organisms have a fitness advantage that, after the community has stabilized, 
is hard for newcomers to disrupt (Debray et al. 2022). Consistent with the latter, the 
higher resistance to infection of stable microbial communities (as opposed to a dys-
biosis state) is known for many host organisms, including crop plants (Shade et al. 
2012; Fu et al. 2019).

Biofilms originating from bacteria in the phyllosphere have the potential to act as 
a biocontrol agent, as shown for some Bacillus strains in maize (Fessia et al. 2022b). 
For a Bacillus subtilis strain, it was shown that the biocontrol activity depends on 
the formation of a functional biofilm to effectively antagonize bacterial pathogens 
in the phyllosphere (Zeriouh et  al. 2014). Similar observations were made for 
Pseudomonas piscium in the wheat head microbiome, where biofilm formation was 
necessary to induce the production of antimicrobial substances (Chen et al. 2018). 
An effective establishment on the plant is key for the formation of viable biofilms 
composed of bacteria with biocontrol activity. For this, the influence of abiotic fac-
tors should not be underestimated. One essential difference between the phyllo-
sphere and soil or rhizosphere is the exposure to light. It has been shown that 
non-phototrophic,  biocontrol-associated bacteria in the phyllosphere respond to 
access and quality of light. Certain wavelengths, particularly in the UV range, can 
promote the biofilm formation of these bacteria in the phyllosphere (Karlsson et al. 
2023). Factors like light are relatively easy to control during certain kinds of agri-
cultural production as light conditions in greenhouses could be adjusted to promote 
biofilm formation of desired microbes and thereby enhance biocontrol activity.

Additionally, biofilms promote genetic exchange among their members, enabling 
the faster spread of resistance genes among the population through horizontal gene 
transfer, increasing their chance of fending off invaders (Madsen et al. 2012). The 
latter is enhanced by QS within the members of the biofilm, which promotes a dis-
tribution of roles, allowing a subset of specialized cells to focus on the production 
of antimicrobials, ultimately increasing their biocontrol potential (van Gestel et al. 
2015). However, drawbacks related to the lack of dispersal of biofilm-prone biocon-
trol agents could limit their effectiveness in practice (Wei et al. 2016). Nevertheless, 
looking forward, the elucidation of the dynamics of these biocontrol mechanisms 
remains a promising avenue for future research, offering insights into their practical 
applications in agriculture and plant protection.
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7.13  Challenges and Considerations: Harnessing Biofilms 
for Plant Health

Despite progress in recent years, harnessing beneficial biofilms for effective disease 
management and general plant health promotion presents a multifaceted landscape, 
marked by challenges and exciting prospects (Dewi et al. 2023). A critical challenge 
is the need for a comprehensive understanding of the mechanisms underlying 
biofilm- mediated biocontrol. The intricate interplay between the biofilm-forming 
microbes and pathogenic bacteria within the plant microbiome demands in-depth 
studies to unravel the specific biochemical and molecular processes involved in 
pathogen inhibition (Patil et al. 2022). Furthermore, application-oriented studies are 
needed to ensure biofilm treatments are successful in the field with minimal disrup-
tion of the native ecosystem.

7.14  Biofilm Stability and Specificity

As described earlier, environmental conditions such as soil type, temperature, pH, 
and nutrient availability influence biofilm stability (Ansari et al. 2017). Understanding 
the impact of these factors on biofilm formation and persistence is necessary for 
successful disease management. For example, pathogenic bacteria may also form 
biofilms on plant surfaces and compete with beneficial biofilms (Carezzano et al. 
2023). For the persistence of beneficial biofilms and the prevalence of their produc-
ing microbes, these environmental conditions should be kept within optimal ranges 
to prevent disruption and displacement by pathogens.

Identifying and selecting microbial strains with beneficial traits and pathogen- 
suppressing properties is another crucial point. Ensuring that the biofilm-forming 
microbes have a higher affinity and dominance in the habitat than target pathogens 
can enhance the efficacy of disease suppression (Afridi et al. 2022). For example, 
this can be achieved through a combination of compatible biocontrol agents and 
certain chemical pesticides (Ons et al. 2020; Djaenuddin et al. 2021). In this case, 
the pesticides carve out a niche for the biocontrol agents to colonize and prevent 
loss of beneficial bacteria.

A complex multispecies biofilm, including beneficial bacteria and fungi, could 
contribute to a more robust defense against pathogens. Consideration must be given 
to the host plant’s compatibility with the biofilm-forming microbes to avoid nega-
tive effects. Most bacteria have a narrow host range and only colonize certain areas 
within their host (Tovi et al. 2019). To ensure successful colonization of beneficial 
microbes, treatment strategies have to be adjusted to the individual plant species.
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7.15  Biofilm Application

Determining the optimal timing for biofilm application is essential for effective dis-
ease management. Factors such as plant growth and disease development stages 
should be taken into consideration. This challenge overlaps with the optimization of 
environmental conditions as these also determine application success (Lopes et al. 
2021). Developing effective formulations for delivering biofilm-forming microbes 
to plant surfaces is challenging. Inoculation success depends strongly on the indi-
vidual microbe, as well as on the plant host (Lopes et al. 2021). Antagonistic inter-
actions within the inoculation members must be taken into account to ensure 
effectiveness (Xu et al. 2011). Additionally, formulations should ideally also have a 
long microbial shelf life and ensure host adherence and biofilm formation in natural 
settings.

Developing reliable methods for monitoring the establishment and effectiveness 
of beneficial biofilms in the field is essential for the success of the treatment. This 
includes nondestructive techniques for assessing biofilm coverage and activity 
(Romano et al. 2020). Most methods in use have their downsides, hence the appro-
priate method has to be chosen based on individual needs. Current methods include 
culture isolation (Morris et  al. 1998) microscopy (Velmourougane et  al. 2017), 
quantitative PCR (Stets et al. 2015), and next-generation or whole-genome sequenc-
ing (Guzmán et  al. 2020). Continuous monitoring of plant health and incidence 
(Roper et al. 2021) is necessary to evaluate the long-term impact of biofilm applica-
tions on disease suppression and plant productivity. Modern techniques suggest 
using “phytosensor” plants, which can immediately alter their phenotype upon 
pathogen recognition (Mazarei et al. 2008). Other simple and noninvasive methods 
include imaging (Mahlein 2016) and spectroscopy (Altangerel et  al. 2017). 
Additionally, approaches have been described based on measuring the electrical 
conductivity of nutrient solutions (Jeon et al. 2017).

Biofilm-forming microbes should be cautiously introduced to avoid disrupting 
the natural microbial balance in the ecosystem (Cook 1996). Risks include gene 
transfer and uncontrolled spread of, for example, antibiotic resistances among other 
microbes native to an ecosystem. Other concerns may relate to the production of 
unintended secondary metabolites, causing unwanted antagonism among the micro-
bial community and leading to elicitation of plant defenses (Woo and Lorito 2007). 
Assessing the potential environmental impact and long-term consequences of bio-
film applications is essential as well as challenging in itself, and is an area of ongo-
ing research and legal regulation (Liu et al. 2022; Vassileva et al. 2022).

7.16  Conclusions and Future Perspective

Biofilm research has grown substantially over the past few decades. Initially cen-
tered on preventive and destructive strategies against the detrimental effects, mainly 
in the medical domain, the focus has shifted toward harnessing biofilms for biotic 
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and abiotic stress protection. This presents a promising avenue for sustainable agri-
culture. The diverse outcomes of these biofilms, ranging from disease suppression 
to enhanced nutrient uptake, underscore their potential to revolutionize plant health 
management. As research advances, it is evident that understanding the intricate 
microbial interactions within biofilms and their influence on plant hosts is pivotal. 
Notably, research has expanded to explore monospecies biofilms and artificial syn-
thetic communities that combine diverse metabolic activities. Future directions in 
this field should emphasize the exploration of microbial diversity within biofilms 
and the integration of biofilm engineering to tailor these microbial communities for 
optimal plant–microbe interactions. Additionally, they should not neglect the devel-
opment of monitoring techniques and investigation into climate-resilient bacterial 
biofilms. Global collaborative initiatives will further accelerate progress, facilitat-
ing the commercialization and widespread adoption of beneficial biofilm technolo-
gies in agriculture. The convergence of these future directions holds the key to 
unlocking the full potential of beneficial biofilms, offering sustainable solutions for 
plant protection, and contributing to the resilience of agricultural systems in the face 
of a growing global demand for food.
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