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Introduction

Summary

e Biotic and abiotic interactions shape natural microbial communities. The mechanisms
behind microbe—microbe interactions, particularly those protein based, are not well under-
stood. We hypothesize that released proteins with antimicrobial activity are a powerful and
highly specific toolset to shape and defend plant niches.

¢ We have studied Albugo candida, an obligate plant parasite from the protist Oomycota
phylum, for its potential to modulate the growth of bacteria through release of antimicrobial
proteins into the apoplast.

¢ Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabi-
dopsis thaliana samples revealed an abundance of negative correlations between Albugo and
other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves
combined with machine learning predictors enabled the selection of antimicrobial candidates
for heterologous expression and study of their inhibitory function. We found for three candi-
date proteins selective antimicrobial activity against Gram-positive bacteria isolated from
A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stabi-
lity of the community structure. We could ascribe the antibacterial activity of the candidates
to intrinsically disordered regions and positively correlate it with their net charge.

e This is the first report of protist proteins with antimicrobial activity under apoplastic conditions
that therefore are potential biocontrol tools for targeted manipulation of the microbiome.

host and microbes are in stable equilibrium. In microbial com-
munity network analyses of the phyllosphere, hub microbes

The plant leaf is a highly competitive habitat for microbes due
not only to limited resources, but also to its instability as a result
of rapidly changing conditions, for example, microbes triggering
defense reactions or exploiting the habitat up to its destruction
(Hassani ez al., 2018). As a consequence, mechanisms that enable
microbes to fight off opponents, by, for example, outcompeting
competitors for limiting resources or releasing antimicrobial
compounds, are under strong selective pressure (Freilich
et al., 2011). Identification and characterization of such mechan-
isms could lead to breakthroughs in therapeutics and disease con-
trol (Bollenbach, 2015). In particular, studies on stable
interactions in natural microbial communities have historically
been considered an important resource in the discovery of new
antimicrobial compounds (Molloy & Hertweck, 2017). Some of
the best host-adapted microbes include obligate biotrophs,
pathogens that can only survive on a living host (Ruhe
et al., 2016). They rely completely on intact plant niches where
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emerge as highly interconnected microbes that play a central role
in the management of the microbial composition (Agler
et al., 2016). The oomycete and obligate biotroph pathogen
Albugo was shown to be such a microbe by reducing the growth
of some microbes while increasing the growth of others, thereby
significantly impacting the leaf microbial community (Agler
et al., 2016). However, the mechanisms that underlie inhibition
or promotion of co-occurring microbes remain largely unex-
plored. Therefore, Albugo infection and its effect on the micro-
biome represents an ideal model system to identify and study
antimicrobial strategies by obligate pathogens that need to defend
their niche to keep the host alive.

Albugo is the causal agent of white blister rust on Brassicaceae
plants. Taxonomically, it belongs to the Oomycota, a heteroge-
neous group of organisms comprising many highly adapted para-
sites of plants, animals, and humans. Oomycetes can be
considered protists as they are eukaryotes that do not belong to
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the animal, plant, or fungal kingdoms (Burki ez 4/, 2019). Fol-
lowing penetration into the plant host via the leaf stomarta,
Albugo develops intercellular hyphae to colonize the plant extra-
cellular space, known as apoplast (Berlin & Bowen, 1964).
Herein, it is in contact with other endophytic microbes and com-
petes for nutrient and habitat dominance. As an obligate bio-
troph, Albugo relies on the living plant for nutrients and
structural support and hence, for overall survival. As a conse-
quence, Albugo is incapable of growing independently of its host
and reduction in its genome has led to the loss of all of its second-
ary and most of its primary metabolic pathways (Kemen
et al., 2011). To shape its niche, Albugo releases proteins into the
plant cytoplasm and the apoplast. Some of these so-called effector
proteins modulate host immune responses, but for many of them
the function remains unknown (Furzer et /., 2022). As described
only recently for a hemibiotrophic fungus, apoplastic-secreted
proteins can also act as microbiome control agents since they
selectively modify the endophytic bacterial community and can
therefore be considered effectors governing microbe—microbe
interactions (Snelders ez al., 2018, 2020, 2021).

Enrichment in long intrinsically disordered regions (IDRs) is a
common feature of the secretome of plant pathogens (Marin
et al., 2013). IDRs are protein domains that, in general terms,
lack a stable folding conformation (Oldfield ez 4/, 2019). This is
due to their sequence, which is biased toward certain disorder-
promoting amino acids and often shows hydrophilic tendencies
(Dubreuil ez al., 2019). The function of IDRs in proteins can
vary considerably depending on the environmental conditions,
owing to their inherent structural pliability. In plant pathogenic
eukaryotes, IDRs have been proposed to be relevant for extracel-
lular effector protein delivery into host cells or the apoplast (Liu
et al., 2019). Effectors need to be flexible enough to evade host
recognition and require a certain plasticity to bind host targets
even with slight variations (Marin e¢ 4/, 2013). Recently, IDRs
have been found to be responsible for antimicrobial activity, par-
ticularly in peptides with a positive net charge (Latendorf
et al., 2019). These cationic intrinsically disordered antimicrobial
peptides (CIDAMPs) could be a novel source of highly specific
antimicrobials, especially those from obligate biotrophs, as they
do not harm the host but specifically shape the niche for the
needs of the pathogen.

Here, we explore the antimicrobial activity associated with
IDRs of apoplastic proteins from Albugo candida (Pers.) Kunze,
and report for the first time an example of a protist and obligate
biotrophic pathogen as a potential source for highly specific anti-
microbials.

Materials and Methods

Interaction network inference

We inferred interaction correlations between operational taxo-
nomic units (OTUs) on an amplicon sequencing dataset of wild
Arabidopsis thaliana's (L.) Heynh phyllosphere microbiome sam-
ples. The dataset combined analyses of 16S and 18S ribosomal

RNA marker genes as well as of the internal transcribed spacer
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(ITS) regions with supporting metadata. We analyzed the raw
OTU tables (M. Mahmoudi et al, 2023, in preparation) for
microbial correlations using the software FLASHWEAVE (Tackmann
et al., 2019; Supporting Information Methods S1).

Mass spectrometry and data analysis

We infected A. thaliana plants of ecotype WS-0 with A. candida
strain Nc2 by spore suspension spray inoculation. We extracted
apoplast samples from these as well as from uninfected plant
leaves at 10 d post-infection (dpi) using vacuum pump infiltra-
tion (Methods S1).

For the mass spectrometry, we chemically denatured the apo-
plast proteins and reduced disulfide bonds followed by alkylation.
We performed high pH fractionation using the Pierce High pH
Reversed-Phase Peptide Fractionation Kit on the trypsinized pep-
tides (Zittlau ez al., 2021) and labeled them with dimethyl on Sep-
Pak C18 Cartridges (Boersema ez al., 2009). We analyzed the sam-
ples on a Q Exactive HF mass spectrometer and on an Exploris
mass spectrometer and processed raw data files with the Max-
QUANT software suite v.1.6.7.0 (Cox & Mann, 2008). The MS/
MS data were searched against the UniProt A. thaliana database
(18218 entries), the A. candida strain Nc2 predicted proteome,
assembly accession: GCA_001078535.1 (Links e @/, 2011) and
commonly observed contaminants (Methods S1). We considered
an Albugo protein as present in the apoplast with high confidence
when it had at least one predicted peptide match with an Andro-
meda score higher than 10 (Cox ez 4/, 2011). We assessed the rela-
tive abundance of proteins in the apoplast by the normalized ratio
of the peptide intensities between infected and non-infected treat-
ments.

Protein annotation and prediction

We performed functional annotation using INTERPROSCAN v.5
(Jones et al., 2014) and analyzed the assigned gene ontology (GO)
terms with the GOATOOLS software (Klopfenstein ez al., 2018). We
used TPPRED 3.0 to predict mitochondrial localization (Savojardo
et al, 2015). For the antimicrobial assessment, we ran the pre-
dicted proteome of Nc2 through an antimicrobial prediction pipe-
line (hteps://github.com/danielzmbp/appred) consisting of several
tools: ANTIMICROBIAL PEPTIDE SCANNER v.2, AMPGRAM, and
AMPEPrY (Veltri ez al., 2018; Burdukiewicz et al, 2020; Lawr-
ence et al, 2020). These machine learning-based models
attempt de novo prediction of antimicrobial activity not by
similarity but by the compound features of the amino acid
sequence. We considered a prediction as positive for antimicro-
bial activity when the weighted average of the three methods
was higher than the cutoff of 0.54 (Methods S1). To predict
disordered regions, we used the tool FLDPNN with default set-
tings and a cutoff of 0.3 (Hu er 2, 2021). We considered a
protein to contain IDRs when it presented at least 15 predicted
disordered residues in a consecutive order. To detect composi-
tional bias in the protein sequences, we used FLPS 2.0 (Harri-
son, 2021). Further molecular prediction methods are described

in Methods S1.
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Heterologous expression, purification, and rebuffering

We synthesized complementary DNA (cDNA) from total RNA
extracted from A. candida-infected A. thaliana plants. From this,
we amplified candidate sequences and cloned them using the In-
Fusion™ cloning method (TaKaRa Bio, Kusatsu, Japan) into
pET28b vectors for expression in Escherichia coli (Table S1). We
cloned candidates that had a putative secretion signal as predicted
by the slow model implemented in SIGNALP v.6, namely C14 and
C15, without the secretion-signal encoding sequence (Teufel
et al., 2022). We overexpressed the candidate proteins in E. coli
strain SHuffle® (New England Biolabs, Ipswich, MA, USA) at
30°C for candidates C14 and derivatives and strain Rosetta™
DE3 (Merck, Darmstadt, Germany) at 37°C for candidates C05,
C15, C06, and derivatives (Methods S1).

We extracted inclusion bodies from cell pellets under denatur-
ing conditions (Methods S1). The denatured proteins were puri-
fied with HisTrap™ excel (GE Healthcare, Chicago, IL, USA) in
a one-step elution (elution buffer: 100 mM sodium phosphate,
10 mM Tris, 7 M urea, pH 4.5). This was followed by concentra-
tion and rebuffering in testing buffer (10 mM BisTris, pH 5.9)
via dialysis (Methods S1).

We analyzed digestion in the native system by incubating the
expressed proteins with extracted apoplastic fluid (Methods S1).
We assessed the secondary structure of the purified protein
domains by circular dichroism (CD) spectroscopy and applica-
tion of a predictor to the spectra for classification into ordered or
disordered (Micsonai ez al., 2022; Methods S1).

Antimicrobial testing

During the pairwise inhibition assays, we tested strains from a stock
of plant-isolated bacteria collected during A. thaliana sampling
(bacterial strains 101-I36, Table S2; strains 137-146, Table S3;
Methods S1). From these, we designed two synthetic communites
(SynComs) for community testing. SynComA comprised 12 bac-
terial strains and three yeasts (Table S2) from the A. thaliana core
community. SynComB was constructed as a smaller version of Syn-
ComA and comprised five bacterial strains (I01, 103, 104, 113, and
128; Table S2). We grew overnight cultures from single colonies in
nutrient broth medium at 22°C. We adjusted protein molarity and
added the rebuffered proteins at a v/v of 1:1 to the cell cultures
diluted to a starting 600 nm optical density (ODggo) of 0.1 for a
final testing volume of 100 pl. We used the final buffer from the
dialysis as control. We measured ODgp every 15 min over 19 h
with shaking at 22°C (Methods S1).

We conducted in culture bacterial community experiments
with two of the peptides (C06d and C06b) using SynComB. We
mixed SynComB suspensions in a 1: 1 v/v with adjusted protein
solutions followed by a 24 h incubation at 22°C. We then added
rifampicin-resistant Pseudomonas syringae pv tomato DC3000
(Pst) and continued incubation for another 24 h. We counted Pst
colonies on rifampicin containing plates after incubating for 32 h
at 22°C. We performed the following treatment combinations:
(1) SynComB plus buffer, (2) SynComB without Aeromicrobium
Jastidiosum 101 plus buffer, (3) SynComB plus peptide C06d, (4)

© 2023 The Authors
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SynComB plus peptide CO6b (Methods S1). For assessing inter-
actions of A. fastidiosum 101 with other bacterial species from
SymComA, we examined one-to-one inhibition by a co-
cultivation setup and analyzed the inhibition zone (Methods S1).

In planta SynCom assays

To conduct the gnotobiotic SynCom experiments, we created a
suspension of SynComA (12 bacteria and three yeast; Table S2)
and sprayed it onto 4-wk-old sterile A. thaliana plants. We sprayed
the plants with the Pst pathogen 1wk after the SynCom inocula-
tion (Methods S1). We sampled plants for amplicon sequencing
immediately after SynCom inoculation, before Pst inoculation on
day 7 and 3 d post Pst inoculation. Three samples were taken from
each of the three treatments, whole SynComA, SynComA without
A. fastidiosum 101 and mock control without SynCom. We
extracted DNA from the samples using a PowerSoil DNA Isola-
tion Kit (MO BIO Laboratories Inc., Hilden, Germany). We cre-
ated amplicon libraries of the bacterial 16S rRNA gene and ITS2
region using the AmpStop method (Agler er al, 2016; Mayer
et al., 2021; Table S4) and performed Illumina sequencing (Meth-
ods S1). We processed and analyzed the raw sequencing reads
using QuME2, with which we calculated Pst relative abundances
and principal coordinate analysis (PCA) based on Euclidean dis-
tances of the rarefied amplicon sequencing variant (ASV) frequen-
cies to measure sample to sample variation (Bolyen ez /., 2019).
We used SynComB (101, 103, 104, 113, 128; Table S2) for the
in planta antimicrobial protein assay. We mixed SynComB with
2 uM purified peptides in a 1:1 ratio and applied it to non-
sterile A. thaliana plants via dipping the individual leaf tips. In
total, we applied two combinations: SynComB plus C06d and
SynComB plus CO6b. We combined three treated leaf tips per
plant in one sample and used three plants for each treatment
combination as biological replicates. We cut out leaf disks (dia-
meter: 0.8 cm) from the treated leaf tips at sampling points 1 h
(T0) and 3 d (T1) after application. We used A. fastidiosum 101
alone instead of SynComB in the same setup (Methods S1).

Nanopore sequencing and quantitative PCR

We used the phenol/chloroform method for extraction of DNA
from the frozen leaf samples (derived from Sambrook & Rus-
sell, 2001). We amplified the 16S rRNA bacterial genes using the
AmpStop method (Mayer et al., 2021; Table S4). For the ampli-
cons of each biological replicate, we constructed one Nanopore
sequencing library using the Native Barcoding Kit (SQK-
NBD112.24; Oxford Nanopore Technologies (ONT), Oxford,
UK). Sequencing reactions were performed on a MinION flow-
cell (R10.4; ONT) connected to a MKIB device (ONT).
Sequences were assigned to the full 16S gene sequence from each
of the five SynComB members and the A. thaliana chloroplast
sequence through BrastN (Camacho ez al, 2009). We calculated
the relative reads of the microbial strains to the chloroplast reads
from the plant in each respective sample (Methods S1).

To assess the absolute abundance of the A. fastidiosum 101, we
performed quantitative PCR (qPCR) on the extracted DNA
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using primers specific to the 16S rRNA gene of strain 101 and large amplicon sequencing dataset of wild A. thaliana from six con-
reference primers targeting the A. thaliana elongation factor 1-  secutive years in six locations (735 samples containing a total of

alpha (Table S4). We used the SsoAdvanced Universal SYBR 11172 OTUgs). In the resulting correlation network, consisting of
Green Supermix (Bio-Rad) and the CFX Connect™ system (Bio- 123 316 edges and 11 150 OTUs, we found the Albugo sp. OTU

Rad laboratories, Hercules, CA, USA). We assessed the abun- to be in the upper top 0.85 quantile of the total interactions with a
dance of A. fastidiosum 101 in reference to the elongation factor degree of 33 including 21 positive interactions (Figs la, S1).
1-alpha gene of the plant. Furthermore, this OTU was in the top 20 when ranked by nega-

tive interactions with a total of 12, including connections to bac-
teria, fungi, and one other non-fungal eukaryote (Figs 1b—d, S2).
The negatively correlated bacteria included mostly Gram-negative
strains of which the most abundant phylum was the Proteobacteria
with four species members. The negatively correlated eukaryotes

Results

Albugo is highly intercorrelated

We set out to predict robust and ecologically relevant correlations included an ascomycete fungus and two green algae (Fig. 1d). In
between Albugo and other co-occurring microbes, as well as assess ~ summary, our analysis indicates that the protist pathogen Albugo is
the significance of the number of these correlations in the context  highly intercorrelated, relative to others in the phyllosphere, parti-
of the phyllosphere. With these aims, we applied the software  cularly through negative correlations when compared to the nature
FLASHWEAVE to infer direct interactions between the OTUs of a of interactions among other plant microbes.
(a) (b)
Albugo sp.
3 / 5
5 400 g 10
e %5 Albugo sp.
o 5}
] ]
O .
0 10 20 30 40 0 10 20 30 40
No. of positive edges per OTU No. of negative edges per OTU
(¢ (d)
Oxalobacteraceae sp. Adhaeribacter sp. (-)
Albugo sp. Kaistobacter sp. (=)
Klebsormidium sp. Desmococcus sp
Dothideomycetes Sohi dal ( '
5 Pseudomonas sp. PRINGOTEES SP- '\;) o
5 Leotiomycetes sp. o o SV
Caulobactereaceae sp. 0, @ ] o° Chlorophyta sp.
Titaea maxilliformis ' 73 o1
Pseudomonas viridiflava Gaiell {EEEEE s ; ,, =
Sphingomonas sp. ' Albugo sp. 0.074
Cladosporium sp. 008 p, ] Nannocystis £p. ()
Flavobacteriaceae sp. (—)onD‘ @y 086
Degree g S %,
Degree no. V4 ? Cellulomonas sp. (+)
Il Negative . Truepera sp. (+)
B Positive thgdom Phenylobacterium sp. (-)
Bacteria Dothideomycetes sp.
Non-fungal eukaryotes
Fungi E |

-0.10 -0.05 0.00
Weights

Fig. 1 Network of operational taxonomic unit (OTU) interactions in the phyllosphere of Arabidopsis thaliana. Histograms of the number of positive (a) and
negative (b) correlations (degree) as predicted by FLasHWEeave on the A. thaliana phyllosphere amplicon dataset. Highlighted is the location of the Albugo
sp. OTU in the bins. (c) Degree distribution of OTUs in the interaction network of phyllosphere data, displaying nodes with 12 or more negative
interactions and > 100 000 total reads in the dataset, where Albugo places tenth. (d) Inferred negative interactions for the Albugo sp. OTU, totaling 12
connections to other members in the network. Color of the edges and nodes represent the strength of the correlation and the phylogenetic kingdom to
which the node belongs, respectively. Unless explicitly stated, taxonomy at the species level could not be resolved with confidence (bootstrap <90). Gram
stain of bacterial nodes is displayed in parentheses.
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Antimicrobial proteins are enriched in the apoplast

To identify potential, protein-based causal agents of such nega-
tive correlations resulting in a reduction of microbial diversity,
we studied Albugo proteins released into the plant apoplast
(Fig. 2a). Through proteomic analysis, we identified 563 high
confidence proteins from A. candida in the apoplast of infected
A. thaliana leaves, representing 4.2% of the total predicted
proteome of A. candida (Fig. 2b). Among these, 78 proteins
(13.8%) carried a putative secretion signal, comparable to similar
analysis in one other obligate biotrophic oomycete (Figueiredo
et al., 2022). Mitochondrial localization was assigned to 24
proteins (4.3%) with TPrreD. Although this suggested minor
contamination from broken hyphae, the intensity of mitochondrial-
annotated protein was overall low, only seven surpassing the raw
median intensity of A/bugo proteins. In addition, it is not uncom-
mon for fungi to release mitochondrial proteins in extracellular
vesicles (Liebana-Jordan ef al., 2021), considering their similarity

in lifestyle, it is likely oomycetes use similar strategies. We found
that 457 out of the 563 proteins (76.2%) resulted in significant
hits for at least a GO term after annotation (Fig. S3). For these,
we studied the enrichment of biological functions compared to
the predicted intracellular proteome of A. candida. Carbohydrate,
amino acid and nucleic acid, catabolism and biosynthesis fea-
tured prominently in the enriched terms (Fisher's exact test
Holm-corrected P <0.001; Fig. 2c). To find novel antimicrobial
proteins, we employed a de novo antimicrobial activity prediction
approach. In this analysis, we found two of the tools (AMPGRAM
and AMPEPPY) to be biased towards either a longer or shorter
protein length in our dataset, therefore we adjusted the weight
based on the R-squared value of the correlation (Fig. S4). Follow-
ing the weighted score, a total of 131 apoplastic proteins were
found to be positive for antimicrobial activity (23.3%, compared
t0 20.1.3% in the entire A. candida proteome; Table S5) with an
average amino acid sequence length of 499. This corresponded
to a significant enrichment for the presence of predicted

(a) (b) —'__A_rlt_lTlcrobml ;o)red|ct|on
: - T 20.1% of total
S Apoplast proteomics .7 B N
C& 4.2% of total fi 5 \\
Uninfected i = -~ ,:4 \
Arabidopsis thaliana S II 2539 i \‘
Q :
o= . u I | l’ e e ‘I Albugo candida
Albugo candida-infected % - —C ( - m/z | apoplast | proteome
] ) . L
Arabidopsis thaliana Ratio of infected to uninfected “ 10208 ,'
treatment intensities for assessing \ /
Apoplast Trypsinization and abundance of proteins in apoplast \ /
extraction differential labeling \\ ,’
S e
(c) (d) o
Depth 1
1 Monosaccharide metabolic process - ° Il Not in apoplast
Carbohydrate metabolic process - n
3 Protein folding - < BN In apoplast
e 4 Alpha-amino acid metabolic process -+ ® %
® 6 Sulfur compound metabolic process - 5
7 Organic acid biosynthetic process 1 @ o
4 Organophosphate metabolic process { ® BP ©
Study count Carboxylic acid biosynthetic process - ° e
e 8 Monocarboxylic acid metabolic process 1 e S
Carboxylic acid metabolic process 1 ® @ 0.5 -
e 16 Amide biosynthetic process { @ =
e 24 Nucleoside diphosphate phosphorylation - ° g
e 32 Purine nucleotide metabolic process { @ 5
Transaminase activity - o c
® 40 Structural molecule activity K
® 48 Aminopeptidase activity 4 e E:
Carbon-oxygen lyase activity =
Intramolecular transferase activity, phosphotransferases - . MEF g
Intramolecular oxidoreductase activity <
Isomerase activity 0-
Pyridoxal phosphate binding 1 e
Unfolded protein binding - n=12747{ ———— N —————
T— *
3 4 n=5631 DG
~log1o(P) 00 01 02 03 04 05 06 07

Antimicrobial prediction

Fig. 2 Proteomics of Albugo candida apoplastic proteins from infected Arabidopsis thaliana leaves. (a) Workflow of the proteomics analyses on infected
(10 d post-infection) and uninfected A. thaliana. (b) Venn diagram of A. candida proteome. A total of 563 proteins were identified in the apoplast, of which
131 have a predicted antimicrobial function. (c) Enrichment of gene ontology terms related to biological processes (BP) and molecular functions (MF) in
apoplastic proteins compared to background proteome in A. candida with a significance of P <0.001. Depth represents the position of the term in the gene
ontology (GO) hierarchy tree (higher depth results in more specific terms) and study count the number of enriched genes which contain that term. (d) Nor-
malized histogram of antimicrobial predictions in proteins found or not in the apoplastic proteomics for A. candida with kernel density estimate represented
as a line. At the bottom, a box plot represents the distribution of proteins with antimicrobial prediction within the apoplastic and non-apoplastic subset
(Mann-Whitney U-test, P =0.015). A dashed red line indicates the cutoff of 0.54.
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antimicrobial proteins in the apoplastic proteome (one-sided
Fisher’s exact test, P =0.031; Fig. 2d).

To corroborate and study the potential antimicrobial proper-
ties of these proteins in more detail, we selected candidates for
overexpression in a heterologous system. We considered the
following properties when choosing candidate proteins: (1)
Positive prediction for antimicrobial activity (cutoff higher than
0.54 for consensus prediction), (2) high abundance in the apo-
plast as measured by the relative peptide intensity compared to
that of the uninfected treatment in the proteomics (above med-
jan of the normalized distribution), and (3) representative
sequence length close to average length of candidate pool (499
amino acids). As negative controls, we selected proteins with a
lower antimicrobial prediction that had a comparable size and
abundance to the antimicrobial candidates. We were able to
amplify representative candidates with a positive (C06 and
C14) and a negative (C05 and C15) prediction for antimicro-
bial activity using as template a ¢cDNA library of A. candida-
infected A. thaliana (Fig. 3a; Table 1). All four proteins were
found with a comparable abundance in the proteomics
(Table 1) and had a similar molecular weight (49—60 kDa
when expressed; Table 2). All except C06 had a functional
annotation (Table S6). The candidates, as with the majority of
proteins assigned to A. candida in the proteomic analysis, had
no overlap with plant peptides (Fig. S5). Of note, the pre-
dicted peptide signal for classical secretion of C14 and C15
was removed during cloning. The candidates were subsequently
heterologously expressed in E. coli to test in vitro the antimicro-
bial activity of the corresponding recombinant proteins as

described below.
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Heterologously expressed candidates show antimicrobial
activity

During overexpression of the candidates in the E. coli system, we
observed accumulation of C05 and C14 in inclusion bodies after
IPTG induction under standard conditions. By systematically
testing different expression settings, including lower temperature
(15-37°C), lower inducing concentration (0.1-1 mM IPTG),
and longer induction time (448 h), we could natively extract
C06 and C15 as soluble proteins. Extraction under denaturing
conditions using urea was successful for all proteins, regardless of
whether they were synthesized into inclusion bodies or not
(Fig. S6). Therefore, we used a denaturing extraction protocol as
the standard purification method for comparison of all the
expressed candidates (Fig. S7).

After purification, concentration and rebuffering of the candi-
dates in a testing buffer resembling the apoplastic pH conditions
(BisTris-based buffer at pH 5.9), we performed an antimicrobial
screen on a selection of 24 strains from an in-house microbial
strain collection of plant-isolated bacteria from A. thaliana sam-
ples that were cultured under standard conditions (Table S2).
The microbial collection also includes strains that were detected
as core members in the A. thaliana phyllosphere microbiome,
meaning they are consistently present in natural communities
and hence are likely to inhabit the plant before or during an
Albugo infection (Almario er al., 2022). Overall, we observed a
variable effect on the growth of bacteria, with species within
the same genus showing different responses. We found
selective antimicrobial activity against five strains, including
two Exiguobacterium (110, 111), a Curtobacterium (106), an
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Fig. 3 Antibacterial prediction and activity of apoplastic candidate proteins from Albugo candida. (a) Antimicrobial prediction and relative intensity of the
proteins found in the apoplast of Arabidopsis thaliana, highlighting the selected candidates. (b) Growth curves of Gram-positive bacterial strains from the
phyllosphere microbiome with candidates C05, C06, C14, and C15 at a concentration per well of 0.75 pM compared to blank (dashed lines) during 19 h of
growth. Background color represents inhibition (blue) or promotion (red) of growth based on the difference in the area under the curves (AUC). 95% confi-
dence intervals for these tests are shown in Supporting Information Fig. S9. Information about tested strains is found in Table S2. Growth curves of all 24

tested strains are shown in Fig. S8.
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Table 1 Apoplastic protein candidates from Albugo candida selected for heterologous expression and antimicrobial testing.

Accession Functional annotation Antimicrobial weighted Secretion signal Length Predicted
Candidate (NCBI) (IP database) score (aa) (aa) Abundance IDRs
C05 CCl44519.1 Myo-inositol-1-phosphate 0.33 No (0) 516 10.9 No
synthase
C06 CCl46028.1 None 0.57 No (0) 505 15.1 Yes
C14 CCl45607.1 Glucanosyltransferase 0.62 Yes (22) 453 15.5 Yes
Cc15 CCl42480.1 Glucan-1,3-B-glucosidase 0.25 Yes (21) 449 36.5 Yes

Abundance in the apoplast is represented as the ratio of the intensity peptide values comparing infected and uninfected Arabidopsis thaliana of the three
replicates after normalization. Detailed information regarding functional domains and orthogroups can be found in Supporting Information Table Sé. aa,
amino acid; IDR, intrinsically disordered region; IP, INTErRPrO; NCBI, National Center for Biotechnology Information.

Table 2 Net charge at pH 5.9 and 7.2, theoretical isoelectric point (pl), and
molecular weight in kDa of the expressed candidate proteins and domains.

Theoretical Netcharge  Netcharge  Molecular
Candidate pl pH5.9 pH7.2 weight (kDa)
C05 6.27 5.90 —7.92 60.2
Co6 6.28 8.05 —9.96 571
Co6d 6.86 13.55 -1.27 21.2
Co6b 6.05 1.76 —7.92 39.4
C14 6.23 2.85 —5.27 489
C14d 8.79 8.03 4.00 15.1
C14b 5.60 —2.82 -9.91 35.0
c15 5.89 —-0.36 —-12.77 49.0

Aeromicrobium (A. fastidiosum 101), and a Microbacterium (120).
To a lesser extent, we observed antimicrobial activity on four
other strains, a Sanguibacter (130), a Plantibacter (124), and two
Microbacterium (117, 121; Figs 3b, S8, S9).

Candidate C06 showed the highest inhibitory activity, while
C14 and Cl15 showed minor inhibition at equal molarity
(0.75 pM). Based on the in silico prediction, we expected C06
and C14 but not C15 to display antimicrobial activity (Fig. 3a).
CO05, instead and consistent with the antimicrobial prediction,
had the least antimicrobial effect of all. We additionally found
that all proteins displayed a variable growth promoting effect
towards most other Gram-positive strains: a Curtobacterium
(107), a Pseudarthrobacter (125), a Microbacterium (118), a Strep-
tomyces (136), an Exiguobacterium (109), two Bacillus (104, 105),
and two Arthrobacter (102, 103). The five tested Gram-negative
strains remained largely unaffected by incubation with the pro-
tein candidates during growth (Fig. S8). We also tested the anti-
microbial activity at the higher pH of 7.2 to see whether
apoplastic conditions were necessary for the inhibitory effect to
take place or if cytoplasmic conditions are more likely to enhance
antimicrobial function. We found a significant loss of antimicro-
bial activity for C06 at the pH of 7.2 (Fig. $10). Thus, in sum-
mary, we found a high correlation of the consensus prediction
method with the experimental antimicrobial results exclusively at
a pH reflecting apoplastic conditions.

Computational analysis of all predicted antimicrobial proteins
that had been identified by proteomics of the apoplast revealed a
significant enrichment for IDRs compared to non-apoplastic pro-
teins (Fisher’s exact one-tailed test, P =0.002). This suggests the

© 2023 The Authors
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prevalence of disordered regions in the apoplastic proteome.
Consistent with this, the candidates that showed antimicrobial
activity had long predicted IDRs, notably in the C-terminus with
a positive net charge (Fig. 4a; Table 2). C15, which was not pre-
dicted as an antimicrobial, did also present putative IDRs but
they were slightly shorter in extension at the N-terminus (maxi-
mum stretch of 23 amino acids, vs 129 for C06 and 30 for C14).
In addition, C06 had a compositional bias for alanine and gluta-
mine, and C14 and C15 had a bias toward increased serine
(Table S7), all of which are disorder-associated amino acids
(Uversky, 2013). To test whether the positively charged IDRs
were responsible for the antimicrobial activity, we separately
cloned and purified the C-terminal regions of C06 and C14 (165
and 129 amino acids long, respectively), which were both pre-
dicted to contain IDRs and display high positive net charge
(Tables 2, S8), as well as the remaining N-terminal region of each
protein, which was for the most part not predicted to be disor-
dered. We corroborated the disordered status of b and d domains
through CD spectroscopy followed by application of a binary
classifier. In the spectra comparison of both domains, a striking
difference was apparent between the ordered and disordered
domains of each protein, particularly of C06 (Fig. S11).

We found the strongest antimicrobial activity for both disor-
dered C-terminal domains of C06 and C14 (C06d and C14d)
when compared to the whole protein and the N-terminus
domains (Figs 4b, S12). We observed a correlation between the
predicted net charge of the peptides and proteins of C06 and
C14 and their antimicrobial effect: the higher the net charge, the
higher the antimicrobial activity (Fig. 4c). Furthermore, for
C06d and C14d, we observed a concentration-dependent effect
against Exiguobacterium strains 110 and 111, A. fastidiosum strain
101 and Microbacterium strain 120, with C06d reaching a com-
plete inhibitory activity against A. fastidiosum 101 and Microbac-
terium 120 growth at 2.15 pM (Figs 4d, S13). In the proteomics
dataset, we found not only coverage for a large part of the
sequence of both positive candidates (Fig. 4a) but the identified
peptides also indicated the presence of the disordered domains
with antimicrobial activity in the apoplast, particularly for C06d
(Table S9). To support the hypothesis that the proteins might get
cleaved allowing the release of the IDR peptides in the apoplast,
we incubated the full-length proteins with Nc2-infected apoplast
extracts. We observed cleavage of these resulting in a decrease in
the intensity of the band corresponding to the full-length protein
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and appearance of smaller fragments (c. 20, ¢ 19, <10kDa for
CO06 and . 45, ¢ 40, ¢ 34 and ¢ 30 kDa for C14; Fig. S14). In
addition, when looking at the proteomics dataset that represents
the apoplastic content derived from the host plant A. thaliana, we
found evidence of an upregulation of proteases in the apoplast,
particularly subtilisin-like serine proteases, in the presence of
A. candida infection based on raw intensity peptide ratios
between infected and non-infected plant samples (Table S10).
Hence, we conclude that the observed antimicrobial function of
C06 and C14 might be traced back to the IDRs in the C-
terminus, which is in line with reports from human proteins that
contain IDRs, the CIDAMPs.

To see whether C06d, as the strongest inhibitor, could in prin-
ciple be used as an effective microbial control agent, we con-
ducted antimicrobial assays with three Gram-positive strains
isolated from A. thaliana that were closely related to known plant
pathogens (Table S3). These included Rhodococcus fascians
(Hjerde et al., 2013; Dhaouadi et al., 2020), Clavibacter michiga-
nensis subsp. tessellarius (Carlson & Vidaver, 1982; Li &
Yuan, 2017) and subsp. capsici (Oh et al., 2016). As in the pre-
vious tests, we found the inhibition to be strain specific. While
R. fascians (145, 146) and C. michiganensis subsp. tessellarius (143,
144) were unaffected by protein addition, all tested isolates from
C. michiganensis subsp. capsici (137-142) showed a variable degree
of growth inhibition (Fig. S15). Therefore, due to its ability to
inhibit phytopathogenic Clavibacter, C06d would present a
viable candidate for further investigation regarding its role as a
potential pathogen-control agent.

Apart from pairwise inhibition assays, we were also interested
in the community-level effects. To examine whether the peptides
showed inhibitory activity within a microbial community con-
text, we conducted SynCom experiments in culture media. Syn-
ComB, composed of A. fastidiosum 101, which was inhibited in
the previous tests, and four additional strains (103, 104, 113, and
128), all unaffected in their growth by protein addition, was con-
structed (Fig. S16). We added a rifampicin-resistant pathogenic
strain from P. syringae (Pst) to use as readout. We found that the
growth of Pst was increased when A. fastidiosum 101 was excluded
from SynComB, as compared to the whole five-strain SynComB,
when grown with testing buffer. To see whether C06d could
effectively inhibit A. fastidiosum 101 in a multi-strain community,
we incubated it with the protein solution. In this setting, the
growth of Pst was comparable to the A. fastidiosum 101 dropout
treatment, indicating inhibition by C06d. As a control, we also
tested the SynCom with COG6b, which showed no inhibitory
activity. The Pst load, as measured by the colony-forming unit
(CFU) count per ml was similar to the whole five-strain Syn-
ComB treatment in buffer (Figs 5a, S17). Together, these results
indicate that the inhibitory properties of C06d are persistent in
an in vitro multi-strain bacterial setting.

With the aim to test whether these properties are maintained
in planta, we conducted similar SynCom experiments on
A. thaliana. Following incubation of A. fastidiosum 101 and Syn-
ComB with either C06d or CO6b on the surface of A. thaliana
plants, we monitored the leaf microbiota at 1h (T0) and 3d
(T1) after inoculation. When applying only strain 101 with
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protein C06d or CO6b, we found that the abundance of
A. fastidiosum 101 decreased in the presence of C06d and
increased with CO6b between timepoints TO and T1 (Fig. 5b,c).
While individually not significant, we observed the same trend
using two methods. On one hand, we found that A. fastidiosum
101 abundance relative to the plant measured in the qPCR was
smaller at T1 than T0. On the other, we observed a decrease in
the number of A. fastidiosum 101 reads relative to the plant during
sequencing. Apart from analyzing the in planta single strain
effect, we also assessed the community-level behavior. The abun-
dance of A. fastidiosum 101 showed a similar decrease between
timepoints with addition of C06d on both qPCR and sequen-
cing. After adding CO6b, we found a small decrease as well in the
relative reads, however, much smaller than the decrease with
C06d. For all the other strains except Flavobacterium 113, we
observed an increase in their relative reads with the CO6b domain
while C06d treatment resulted in a stable or slight decrease in the
reads for all (Fig. S18). Especially for Flavobacterium, but also for
most other strains, these results do not exactly reflect the % vitro
assays, likely due to unknown confounding variables playing a
big role in the in planta experiments. However, taken together,
these results support specific inhibition of C06d against
A. fastidiosum 101 in the context of the plant.

Inhibited microbes are important for community stability

To test for the relevance of the inhibited microbes in a natural eco-
logical context, we assessed their necessity for community stability
in planta. We performed dropout experiments on a SynCom in
A. thaliana consisting of 12 bacterial strains and three yeasts (Syn-
ComA), all identified as core microbes, challenged with the model
plant-pathogenic strain of P. syringae. In SynComA without
A. fastidiosum 101, we observed a variable decrease in the resistance
of the plant to infection (Fig. S19). We also observed an overall
increase in the sample-to-sample variation of the bacterial abun-
dances compared to the whole SynComA treatment, which were
consistent for the three replicates. This was generalizable to the
entire bacterial composition of the samples as measured by the lack
of clustering in the PCA for the A. fastidiosum 101 dropout
(Fig. 5d). In addition, through pairwise interaction assays with
SynComA members, this A. fastidiosum strain 101 was shown to
inhibit other bacterial strains. This highlighted its potential in sta-
bilizing the microbiome by controlling the abundance of other
core microbes in the phyllosphere of A. thaliana (Fig. $20).
Further microbial lawn experiments of A. fastidiosum 101 showed
its resilience against other SynCom members in one-to-one inter-

actions (Fig. S21).

Discussion

The plant apoplast is a challenging habitat for the survival of
microbes. On the one side, plant defenses, including oxidatve
bursts and proteases, and on the other, microbes defending their
niche make it a difficult environment to conquer (Jashni
et al., 2015; Wang et al., 2020). Albugo is a filamentous pathogen
that has developed a niche-forming strategy, whereby it modifies
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reads of A. thaliana were obtained from Nanopore sequencing. Sequencing results from community in planta testing are shown in Fig. S18b for strain 101
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the pre-existing plant microbiome to better fit its needs. Some  distribution of positive interactions in the entire network signifies
mechanistic explanations for this phenomenon have been attribu-  that positive relationships are a common occurrence in the phyl-
ted to Albugo’s effect on the immune system of the plant and its  losphere, likely due to sharing of metabolites and other nonspeci-
indirect repercussions on other microbes (Cooper er al, 2008; fic cooperation (Fig. 1a). Meanwhile, the power law distribution
Ruhe ez al, 2016). Specifically, by reducing the plant’s defense  of negative degrees indicates specific interactions by members of
recognition systems, the pathogen allows the thriving of microbes  the network, where only some nodes are highly negatively corre-
that otherwise would not, or vice versa. Here, we provide evidence ~ lated (Fig. 1b). This suggests that these nodes might represent the
suggesting that Albugo directly contributes to shape the plant-  source of inhibition, through, for example, release of antimicro-
associated microbial communities through the release of proteins  bial compounds.
and peptides with antimicrobial activity into the apoplast. Particularly for Albugo, the adjacent positive interactions could
The OTU interaction analysis of the A. thaliana microbiome  imply either promotion of these organisms as potentially benefi-
dataset showed a significant number of positive and negative  cial for Albugo or their hyperparasitic nature as they benefit from
interactions of Albugo with specific community members, sup-  its presence (Fig. S1). Within the network of positive interac-

porting previous findings (Agler e a/., 2016). Overall, the normal tions, we found a correlation between Albugo and the bacterial
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genus Variovorax, which, as a common plant growth-promoting
bacterium, could promote survival of the host plant during infec-
tion, thus indirectly promoting A/bugo (Chen et al., 2013; Finkel
et al., 2020). Although mostly reported in the rhizosphere, it was
shown to protect the plant when in the phyllosphere as well
(Bruisson ez al., 2019; Perazzolli ez al., 2020). By contrast, the
numerous direct negative interactions can be explained by Albu-
go’s need to outcompete microbes that may be detrimental to its
own survival (Fig. 1d). Although the network is undirected and
negative interactions could mean a repression by Albugo or the
opposite, reduced microbial diversity in the phyllosphere upon
Albugo infection points to a majority of negative connections
being outgoing rather than ingoing (Agler ez al, 2016). In agree-
ment with this, Albugo, as an obligate biotroph, also has a need
for controlling the growth of microbes threatening survival of the
host. By reducing the plant’s defenses through the release of effec-
tors, Albugo may leave the plant vulnerable to certain pathogens,
which may have resulted in an adaptive antimicrobial response.
For instance, Cellulomonas, which is shown in the network to be
negatively correlated with Albugo, is a bacterial genus known for
its plant cell wall degrading capabilities (Aydogan ez al., 2018;
Carlos ez al., 2018). To keep the plant alive while suppressing its
defense in the presence of numerous facultative pathogens is a
general problem biotroph symbionts and pathogens face. In any
case, they need to be able to control all those microbes, making
them a currently unexploited resource for novel mechanisms of
antimicrobial strategies.

One strategy to suppress competitors is the release of second-
ary metabolites. The genome of Albugo, however, does not
encode key secondary metabolites potentially responsible for the
observed negative correlations with other microbes (Kemen
et al, 2011). In fungi, protein effectors for microbe-microbe
interactions were identified that have direct or indirect inhibitory
effects on competitors (Snelders ez al., 2020; Eitzen et al., 2021).
For example, a fungal yeast has been shown to secrete a glycoside
hydrolase responsible for inhibition of Albugo (Eitzen
et al., 2021). Functional annotation of ¢. 80% of the A. candida’s
apoplastic proteins revealed a significant enrichment for
metabolism-related processes (Fig. 2¢). This might be explained
by the sampling time point, that is, 10 d after infection, when a
high metabolic turnover is required by the oomycete due to the
active growth of hyphae. Furthermore, GO terms found to be
enriched on our analysis (e.g. monosaccharide and carbohydrate
metabolic processes, unfolded protein binding, oxidoreductase
activity, protein folding) were also found to be enriched among
released proteins by a hemibiotrophic phytopathogenic fungus
(Bleackley er al, 2020). Regarding glycosyl hydrolases with
potential antimicrobial function, Albugo has a significantly lower
number compared to hemibiotrophic and necrotrophic oomy-
cetes and only a small fraction of those could be identified in the
predicted secretome and in the apoplastic secretome (Kemen
et al., 2011). It has been shown that this is a common feature of
obligate biotrophic pathogens, as lytic enzymes are potentially
problematic since they may result in small molecular products
that are recognized and trigger defense, eventually destroying the
habitat (Zhang & Zhou, 2010). Thus, selection may have
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resulted in adaptation of proteins for this purpose. In this vein,
CO06 was unique in showing hints of positive selection as analyzed
in a previous study, which may indicate recent selective adapta-
tion (Gomez-Pérez & Kemen, 2021). We therefore hypothesized
antimicrobial proteins and peptides as a mechanism to defend
such a fragile niche within the leaf as these might be able to evade
plant recognition but nevertheless restrict the growth of other
microbes.

Machine learning has been used successfully to predict de novo
antimicrobial activity during the screening and rational design of
novel anti-infectives (Plisson ez 4/, 2020). With the approach
applied in this study, we found a large percentage of proteins
from Albugo’s predicted proteome to display putative antimicro-
bial activity, particularly those in the apoplastic dataset. Interest-
ingly, all predicted antimicrobial proteins that were found in the
apoplast displayed a significant enrichment in IDRs (Fig. S22).
This is in line with previous findings from other phytopathogens
that show enrichment of intrinsic disorder in extracellular effec-
tors for the purpose of evading detection by the plant (Marin
et al., 2013). We hypothesize that apoplastic localization together
with the presence of long IDRs and a positive net charge are good
predictors for antimicrobial proteins and peptides. In our experi-
ments, this was illustrated by C15, which despite the negative
antimicrobial prediction, had IDRs and specific antimicrobial
activity.

We found that C06 showed antimicrobial activity at pH 5.9
but not at pH 7.2, where it is expected to have a much more
negative net charge (Table 2). In this manner, the pH could act
as an external trigger of the antimicrobial effect exclusively in the
more acidic conditions of the apoplast, thus preventing unwanted
effects in the cytoplasm of the hyphae. Analogously, such a tar-
geted mechanism has been reported for human antimicrobial
peptides (AMPs), which are exclusively activated when they reach
their site of action. This corresponds to the surface of the skin,
which is an acidic environment with a comparable pH to that of
the leaf apoplast (Malik ez a/., 2016). Once released into the apo-
plast, Albugo proteins may be cleaved by proteases of plant or
microbial origin, allowing for the release of AMPs and ensuring
the full antimicrobial activity is only reached in proximity to the
intended bacterial targets. IDRs may facilitate this process
through the prevention of a globular conformation that restricts
the access of proteases. Consistent with this hypothesis, we found
evidence for an enrichment of A. thaliana proteases in the apo-
plast of A. candida-infected plants (Table S10) and the digestion
of the candidates in the presence of infected apoplast (Fig. S14).

The antimicrobial effect of the proteins was much stronger
when the IDR-rich domains were tested (C6d and C14d), while
the less disordered domains (CO6b and C14b) had the lowest
activity at the same molarity (Fig. 4b). The antimicrobial activity
of cationic peptides has been ascribed to their interaction with
cell envelopes which is facilitated by positively charged residues
such as arginine, lysine, and histidine (Cutrona ez 4., 2015). Of
note, candidate C06d had a significant compositional bias for the
presence of histidine (Table S7). As it was the case for the inhib-
ited microbes in this study, particularly susceptible to cationic
peptides are Gram-positive bacteria due to the generally larger
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presence of negatively charged phosphatidylglycerol in their
membrane compared to gram negatives. Thus, the variable anti-
microbial effects of cationic peptides can be explained by the
charge of the target membrane (Malanovic & Lohner, 2016).
This mechanism could translate into contexts other than the
Albugo—Arabidopsis pathosystem, allowing for the possibility of
employing these peptides as inhibitors against strains of interest,
for example, phytopathogens like C. michiganensis subsp. capsici.

When looking at the bacteria inhibited by the A/bugo protein
candidates, we found them to have a large community-shaping
potential. One of the highly inhibited strains, A. fastidiosum 101,
was responsible for a large part of the community stability as
measured by the relative bacterial abundances after dropout in a
synthetic community of A. thaliana resulting in community dis-
ruption in the presence of bacterial phytopathogen Pst (Figs 5a,d,
S19). In line with observations from Agler ez al. (2016), Albugo
infection results in a reduced alpha diversity in the phyllosphere
community. As we also saw a decrease in abundance of
A. fastidiosum 101 in the presence of C06d after 3 d on the plant
during single strain and SynCom in planta testing (Figs 5b,c,
S18), we suggest that inhibitory properties and selective activity
may also apply in the native context. Specifically releasing protein
effectors that target bacteria with an influence over a large part of
the community may thus be a cost-effective way for Albugo to
amplify its phyllosphere-shaping effect while having a reduced
metabolic capability. The ability of the AMP C06d to inhibit
bacteria in a complex in vitro community (Fig. 5a) as well as i
planta, further adds to this hypothesis.

In summary, we have found three apoplastic proteins from the
plant protist pathogen A. candida to be antimicrobial on several
plant-isolated strains belonging to Gram-positive bacteria. These
proteins were selected after apoplast proteomic analysis of leaf
samples and 7 silico prediction and classification of the proteins
in search for candidates with antimicrobial potential. Although
their specific mechanism of action remains to be elucidated, we
found a correlation of the antibacterial activity with the positive
net charge in the IDRs of the C-terminal domains of two of these
proteins. Given the large diversity of yet unexplored obligate bio-
trophs, this study opens the way for novel sources for the discov-
ery of peptide-based antibiotics.
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Fig. S1 Inferred positive interactions for the Albugo sp. opera-
tional taxonomic unit on the Arabidopsis thaliana phyllosphere
amplicon dataset.

Fig. $2 Overview of negative correlation network inferred by
FLASHWEAVE on the Arabidopsis thaliana phyllosphere amplicon
dataset.

New Phytologist (2023)
www.newphytologist.com

New
Phytologist

Fig. S3 Venn diagram of annotated proteins in Albugo candida’s
predicted proteome.

Fig. S4 Scatter plot comparing the three machine learning meth-
ods for antimicrobial prediction to protein length in the proteins
found in the apoplast for Albugo candida.

Fig. S5 Venn diagram of assigned peptides during proteomic
analysis of apoplast samples.

Fig. S6 Expression and purification analysis of the protein candi-
dates by SDS-PAGE and Coomassie blue staining.

Fig. S7 Workflow of the denaturing purification process and sub-
sequent 7z vitro activity assays.

Fig. S8 Bacterial growth curves with candidates C05, C06, C14,
and C15 mean values.

Fig. S9 Bacterial growth curves with candidates C05, C06, C14,
and C15 confidence intervals.

Fig. $10 Comparison of the antimicrobial activity of C06 at pH
5.9 and 7.2.

Fig. S11 Circular dichroism spectra of purified d and b domains
from protein candidates C06 and C14.

Fig. S$12 Inhibition curves of C06, C14, and their domains.

Fig. S13 Inhibition curves of six different concentrations of
C06d and C14d domains toward four sensitive strains.

Fig. S14 Digestion of antimicrobial protein candidates in Nc2-
infected apoplastic fluid.

Fig. $15 Inhibition curves of C06d on Clavibacter and Rhodococ-
cus strains isolated from the phyllosphere of Arabidopsis thaliana.

Fig. $§16 Growth curves from pairwise inhibition assays with the
individual strains from the five-strain bacterial community Syn-
ComB.

Fig. §17 Colony-forming unit counts per replicate of Pseudomo-
nas syringae pv Tomato DC3000 (Pst) in five-strain bacterial syn-
thetic community (SynComB) experiments in liquid culture.

Fig. S18 Change in microbial abundances during iz planta test-
ing of SynComB with Albugo candida proteins C06d and C0O6b
on Arabidopsis thaliana leaves.

Fig. S19 Protective effect of a 15-strain SynCom (SynComA)
with or without Aeromicrobium fastidiosum 101 as measured in
planta by relative abundances of Pseudomonas syringae pv Tomato

DC3000 (Pst).
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Fig. S20 Pairwise inhibition rings of Aeromicrobium fastidiosum
101 against other strains (lawn) in the synthetic bacterial commu-

nity SynComA.

Fig. 821 Aeromicrobium fastidiosum 101 lawn for interaction test-
ing with bacterial strains in the synthetic bacterial community

SynComA.

Fig. S22 Antimicrobial prediction of apoplastic and non-apo-
plastic proteins grouped by the presence or absence of long
intrinsically disordered regions (15 or more amino acids in a

row) from Albugo candida.

Methods S1 Detailed information on all methods used in the
main text.

Table S1 Primer sequences for amplification and subsequent
cloning of candidate sequences from Albugo candida into vector

pET28b.

Table S2 Strain collection of plant-isolated microbes from envir-
onmental sampling of Arabidopsis thaliana.

Table S3 Plant-isolated putative pathogenic Gram-positive
microbes from environmental sampling of Arabidopsis thaliana

employed in the testing of Albugo candida peptide C06d.

Table S4 Primer sequences for analysis of iz planta microbial
community abundances via sequencing and quantitative PCR.

© 2023 The Authors
New Phytologist © 2023 New Phytologist Foundation

Table S5 List of proteins from Albugo candida found in the apo-
plast predicted to be antimicrobial.

Table S6 Detailed description of the functional annotation of
the four candidate proteins from Albugo candida based on
domains and orthologs.

Table S7 Significant compositional bias toward specific amino
acid residues of tested protein candidates from Albugo candida.

Table S8 Net charge at pH 5.9 and 7.2, theoretical isoelectric
point (pI) and molecular weight in kDa of the protein domains

of C06 and C14.

Table §9 Peptide coverage of the C-terminal disordered domains
from candidate proteins in the proteomics analysis.

Table S10 Proteases from Arabidopsis thaliana found in the apo-
plast proteomics to be enriched in the Albugo candida-infected
treatment.
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